
Dominance-Based Duplication Simulation (DBDS)∗
Code Duplication to Enable Compiler Optimizations

David Leopoldseder
Johannes Kepler University Linz

Austria
david.leopoldseder@jku.at

Lukas Stadler
Oracle Labs
Linz, Austria

lukas.stadler@oracle.com

Thomas Würthinger
Oracle Labs

Zurich, Switzerland
thomas.wuerthinger@oracle.com

Josef Eisl
Johannes Kepler University Linz

Austria
josef.eisl@jku.at

Doug Simon
Oracle Labs

Zurich, Switzerland
doug.simon@oracle.com

Hanspeter Mössenböck
Johannes Kepler University Linz

Austria
hanspeter.moessenboeck@jku.at

Abstract
Compilers perform a variety of advanced optimizations to
improve the quality of the generated machine code. However,
optimizations that depend on the data flow of a program are
often limited by control-flow merges. Code duplication can
solve this problem by hoisting, i.e. duplicating, instructions
from merge blocks to their predecessors. However, finding
optimization opportunities enabled by duplication is a non-
trivial task that requires compile-time intensive analysis.
This imposes a challenge onmodern (just-in-time) compilers:
Duplicating instructions tentatively at every control flow
merge is not feasible because excessive duplication leads
to uncontrolled code growth and compile time increases.
Therefore, compilers need to find out whether a duplication
is beneficial enough to be performed.

This paper proposes a novel approach to determine which
duplication operations should be performed to increase per-
formance. The approach is based on a duplication simulation
that enables a compiler to evaluate different success met-
rics per potential duplication. Using this information, the
compiler can then select the most promising candidates for
optimization. We show how to map duplication candidates
into an optimization cost model that allows us to trade-off be-
tween different success metrics including peak performance,
code size and compile time.
We implemented the approach on top of the GraalVM

and evaluated it with the benchmarks Java DaCapo, Scala
DaCapo, JavaScript Octane and a micro-benchmark suite,
in terms of performance, compilation time and code size
increase.

∗This research project is partially funded by Oracle Labs.

CGO’18, February 24–28, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of 2018 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO’18), https://doi.org/10.1145/3168811.

We show that our optimization can reach peak perfor-
mance improvements of up to 40% with a mean peak perfor-
mance increase of 5.89%, while it generates a mean code size
increase of 9.93% and mean compile time increase of 18.44%.

CCS Concepts • Software and its engineering → Just-
in-time compilers;Dynamic compilers;Virtualmachines;

Keywords Code Duplication, Tail Duplication, Compiler
Optimizations, Just-In-Time Compilation, Virtual Machines

ACM Reference Format:
David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl,
Doug Simon, and Hanspeter Mössenböck. 2018. Dominance-Based
Duplication Simulation (DBDS): Code Duplication to Enable Com-
piler Optimizations. In Proceedings of 2018 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO’18). ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3168811

1 Introduction
Compiler optimizations are often restricted by control-flow
merges that prohibit optimizations across basic block bound-
aries. Code duplication can solve this problem by copying
code frommerge blocks into predecessor blocks. This enables
a compiler to optimize the duplicated code for the respective
predecessor.

Consider the pseudo code example in Figure 1a. The vari-
able phi is assigned two inputs, the parameter x in the true
branch and the constant 0 in the false branch. The usage of
phi in the addition could be optimized if its input would be
the constant 0 instead of the variable phi. In Figure 1b we
can see the example after duplicating the merge block into
the predecessor branches. Copy propagation eliminates the
variable phi. This creates the constant folding opportunity
2 + 0, that can be optimized to the code in Figure 1c.
However, duplicating code tentatively at every merge is

not feasible in terms of code size and compile time. Therefore,
we need to limit the number of duplications by determining
before-hand which of them are beneficial for performance.
To do so, we need to solve three problems:

https://doi.org/10.1145/3168811
https://doi.org/10.1145/3168811

CGO’18, February 24–28, 2018, Vienna, Austria David Leopoldseder et al.

1 int foo (int x) {
2 final int phi ;
3 if (x > 0) ph i = x ;
4 else phi = 0 ;
5 return 2 + phi ;
6 }

(a) Initial Program.

1 int foo (int x) {
2 if (x > 0) {
3 return 2 + x ;
4 } else {
5 return 2 + 0 ;
6 }
7 }

(b) After Duplication.

1 int foo (int x) {
2 if (x > 0) {
3 return 2 + x ;
4 } else {
5 return 2 ;
6 }
7 }

(c) After Optimziation.

Figure 1. Constant Folding (CF) Optimization Opportunity.

P1 We need to determine which duplications will increase
peak performance.

P2 To solve P1, we need to know which optimizations
will be enabled by a certain duplication.

P3 Finding optimization opportunities after duplication
requires complex data and control-flow analysis. There-
fore, we need to find a way to perform this kind of
analysis in acceptable time in a JIT compiler.

P1 A problem that was not solved yet by other approaches,
is the question of what to duplicate to increase peak per-
formance. Duplicating code at every merge is not feasible.
It can lead to uncontrolled code growth and compile time
increases. Thus, we present a novel solution to this problem.
We use a static performance estimator [20] to estimate the
peak performance increase of a single duplication operation
before performing it. This allows us to select those dupli-
cation candidates that promise a high benefit at a low cost
(code size and compile time).

P2 Every instruction in SSA [10] which has a φ as its in-
put is a potential target for follow-up optimizations after
code duplication. However, determining which optimiza-
tions are enabled by a duplication and on which instructions
is a non-trivial task. We present an algorithm to find such
opportunities that allows a compiler to decide before-hand,
which duplications carry the best cost / benefit trade-off.

P3 Finding optimization opportunities after duplication
is compile-time intensive, as it requires to know which in-
structions are optimizable after a duplication. There are two
possible approaches to determine if an instruction can be
optimized after duplication: backtracking and simulation.
Backtracking performs a duplication and any subsequent
optimizations and then determines whether this lead to a
benefit. If no progress was made, it restores the version of
the intermediate representation (IR) without the duplication.
Simulation, on the other hand, determines before-hand, if
an optimization will be possible after duplication. Although,
simulation may be significantly faster that backtracking, it
is not straightforward to simulate a duplication and its sub-
sequent optimizations. We present a fast dominance-based
duplication simulation (DBDS) algorithm that allows a com-
piler to find optimization opportunities after duplications.

In summary this paper contributes the following:

• We present a novel algorithm for duplication simulation
that solves the problem of finding optimization oppor-
tunities after duplications. We argue that a simulation-
based approach is favorable over a backtracking-based
approach (Sections 2 to 4).
• We present a duplication optimization cost model that
tries to maximize peak performance while minimizing
code size and compilation time (Sections 4 and 5).
• We integrated our approach in an SSA-based Java bytecode-
to-native code just-in-time (JIT) compiler (Section 5).
• To validate our claims, we performed extensive exper-
iments using the Java DaCapo, the Scala DaCapo, the
JavaScript Octane benchmarks, and a micro-benchmark
suite, showing performance improvements of up to 40%
with a mean peak performance increase of 5.89% (Sec-
tion 6).

2 Optimization Opportunities after Code
Duplication

In this section we discuss basic optimization opportunities
after code duplication.

Constant Folding (CF) can be applied after duplication
if, e.g., one operand of an instruction is a constant and the
other one is a φ. We illustrated this with Figure 1, which
shows a trivial program. The instruction 2 + phi refer-
ences a φ instruction. After duplication, the instructions of
the merge block are copied into the predecessor blocks and
the φ is eliminated. Constant folding can then optimize the
duplicated addition in the false branch to the constant 2.

Conditional Elimination (CE) [30], i.e., the process of
symbolically proving conditional statements also profits
from duplication. Consider the example in Listing 1. In case
the first condition does not hold and i <= 0, the second
condition p > 12 is known to be true. We can duplicate
the rest of the method into the predecessor branches and
eliminate the condition in the else-branch to produce the
code seen in Listing 2.

Partial Escape Analysis and Scalar Replacement
(PEA) [31] opportunities arisewhen an object escapes through
the usage in a φ instruction [10]. This frequently happens in
Java and Scala because of auto-boxing [21]. Listing 3 shows
a PEA example. There would be no need for the A object to
be allocated, except that it is used by a φ instruction. After

Dominance-Based Duplication Simulation (DBDS) CGO’18, February 24–28, 2018, Vienna, Austria

1 int foo (int i) {
2 int p ;
3 if (i > 0) {
4 p = i ;
5 } else {
6 p = 1 3 ;
7 }
8 // merge block m

9 if (p > 1 2) {
10 return 1 2 ;
11 }
12 return i ;
13 }

Listing 1. CE Opportunity.

int foo (int i) {
if (i > 0) {
if (i > 1 2) {
return 1 2 ;

}
return i ;

} else {
return 1 2 ;

}

Listing 2. CE Opportunity
After Duplication.

1 class A {
2 int x ;
3 A(int x) { this . x=x ; }
4 }
5 int foo (A a) {
6 A p ;
7 if (a == null) {
8 p = new A (0) ;
9 } else {
10 p = a ;
11 }
12 return p . x ;
13 }

Listing 3. PEA Opportu-
nity.

int foo (A a) {
if (a == null) {
return 0 ;

} else {
return a . x ;

}
}

Listing 4. PEA Opportunity
After Duplication.

1 class A { int x ; }
2 static int s ;
3 int foo (A a , int i) {
4 if (i > 0) {
5 // Read1

6 s = a . x ;
7 } else {
8 s = 0 ;
9 }
10 // Read2

11 return a . x ;
12 }

Listing 5. Read Elim Oppor-
tunity.

class A { int x ; }
static int s ;
int foo (A a , int i) {
if (i > 0) {
// Read1

int tmp = a . x ;
s = tmp ;
return tmp ;

} else {
s = 0 ;
// Read2

return a . x ;
}

}

Listing 6. Read Elim Oppor-
tunity After Duplication.

duplication, (P)EA can deduce that the allocation is no longer
needed. Thus, scalar replacement can reduce it to the code
in Listing 4.

Read Elimination is the process of eliminating redun-
dant reads. Due to control-flow restrictions, only fully redun-
dant reads [4] can be eliminated. However, we can promote
partially redundant reads to be fully redundant by dupli-
cating them. Consider the example in Listing 5. Read2 is
redundant if the true-branch (i > 0) is taken. By duplicat-
ing Read2 into both predecessors, it becomes fully redundant

in the true-branch, and can be eliminated. This can be seen
in Listing 6.

3 Finding Optimization Opportunities
after Code Duplication

To determine which duplications will increase peak perfor-
mance (P1), we must determine which optimizations will be
enabled by a duplication .

3.1 Backtracking
One possible way of determining what to duplicate is to ten-
tatively perform a duplication at a merge, and then backtrack
if no improvement was possible. Consider the illustration of
a backtracking-based approach in Algorithm 1. To determine
if progress was made, we first copy the control-flow graph
(CFG) as a backup and perform a duplication on the original
CFG. Then we apply a set of selected optimizations on it.
If any of those optimizations is able to optimize our IR, we
re-start with the changed CFG. If no improvement was made,
we backtrack to the copied (original) CFG and advance to
another merge.
Backtracking has three disadvantages: First, copying the

CFG for every predecessor-merge pair is compile-time inten-
sive and thus typically not suitable for a (JIT) compiler. We
did experiments in our implementation in Graal and the copy
operation increased compilation time by a factor of 10. The
main problem of the copy operation is that we need to copy
the entire IR and not only the portions which are relevant for
duplication. This is the case because we do not know which
parts of the IR are changed by subsequent optimizations.
Second, the compile-time impact of a duplication is not

known in advance. In the context of SSA form, code du-
plication can require complex analysis to generate valid φ
instructions for usages in dominated blocks.

Finally, large compilation units (>100k instructions) con-
tain thousands of control-flow merges. Applying optimiza-
tion phases after every duplication to determine if an op-
timization triggered is therefore not feasible. Even though
the presented opportunities can all be computed in (nearly)
linear time over the number of instructions or the IR, pro-
cessing the full IR every time we performed a duplication is
not acceptable for JIT compilation.

3.2 Simulation
We argue that simulation-based approaches do not suffer the
problems of backtracking-based approaches. The main idea
of simulation-based duplication is to determine the impact
(in terms of optimization potential on the whole compilation
unit) before performing any code transformation. This al-
lows a compiler to only perform those transformations that
promise a sufficient peak performance increase (benefit). The
main requirement for this to be practical, is that simulat-
ing a duplication is sufficiently less complex in compilation

CGO’18, February 24–28, 2018, Vienna, Austria David Leopoldseder et al.

Data: ControlFlowGraph cfg
Result: Optimized ControlFlowGraph cfg
bool progressMade← true;
outer: while progressMade do

progressMade← false;
for BasicBlock b in cf д .merдeBlocks () do

bool change← false;
ControlFlowGraph copy = cfg.copy();
for BasicBlock p in b .predecessors () do

duplicate (cfg, p, b);
for opt o in {CE, CF, PEA, ReadElim, StrengthRedux} do

change← o.do(cfg);
end

end
if change then

/* The CFG and basic block list changed, thus we

need to restart. */

progressMade← true;
continue outer;

else
/* Backtrack and advance one merge. */

cfg← copy ;
end

end
end

Algorithm 1. Backtracking-based Duplication

time than performing the actual transformation. Duplication
simulation should avoid the complex part of the duplication
transformation, maintaining the semantic correctness of all
data dependencies, while still allowing valid decisions about
the optimization potential of the involved instructions after
duplication.
Algorithm 2 outlines the basic idea. Before performing

any duplication we simulate each duplication and perform
partial optimizations on the simulation result. Those opti-
mizations are local to the predecessor blocks of the merge
and thus faster than a full optimization over the entire IR. For
each partial optimization we save the optimization potential
(see Section 4). In addition, we store an estimated code size
increase for the duplication. We perform the simulation for
each predecessor-merge pair and store all of the results in
a list. The results are sorted ascending by benefit (optimiza-
tion potential, i.e., expected performance increase) and cost
(code size increase), to optimize the most promising candi-
dates first. This is important in case not all candidates are
duplicated due to code size restrictions. We then iterate each
simulation result and decide if the related transformation is
worth it.

4 Dominance-based Duplication
Simulation

In order to perform beneficial code duplications, we pro-
pose a three-tier algorithm combining simulation, trade-off
analysis, and optimization. The basic idea of this DBDS algo-
rithm follows Algorithm 2 from Section 3.2 and is depicted in
Figure 2. The simulation tier discovers optimization oppor-
tunities after code duplication. The trade-off tier fits those
opportunities into an optimization cost-model that tries to

Data: ControlFlowGraph cfg
Result: Optimized ControlFlowGraph cfg
simResults← [];
for BasicBlock b in cf д .merдeBlocks () do

for BasicBlock p in b .predecessors () do
simCFG← CFG after simulated duplication of b into p;
simResult← result of partial opt (CE, CF, ...) applied to simCFG;
simResults.add (simResult);

end
end
sort simResults by benefit and cost;
for SimResult s in simResults do

if s.worthDuplicating() then
duplicate (s.merge,s.predecessor);
for opt o in {CE, CF, PEA, ReadElim, StrengthRedux} do

o.applyPartial(s.predecessor)
end

end
end

Algorithm 2. Simulation-based Duplication.

maximize peak performance while minimizing code size
and compilation time. The outcome is a set of duplication
transformations that should be performed as they lead to
sufficient peak performance improvements. The optimiza-
tion tier then performs those duplications together with the
subsequent optimizations whose potential was detected by
the simulation tier.

4.1 Simulation
We use the algorithm schematic from Figure 2 and the con-
crete example program f from Figure 3a, which uses Graal
IR [11, 12, 19], to illustrate the simulation tier. Graal IR is
a sea-of-nodes-based [9] directed graph in SSA form [10].
Each IR node produces at most one value. Data flow is repre-
sented with upward edges and control flow with downward
edges. The IR is a superposition of the control-flow and the
data-flow graph. Control-flow nodes represent side-effecting
instructions that are never re-ordered, whereas data-flow
nodes are floating. Their final position in the generated code
is purely determined by their data dependencies.
In order to find optimization opportunities, we simulate

duplication operations for each predecessor-merge pair of
the CFG and apply partial optimizations on them. If a partial
optimization triggers during simulation, we remember the
optimization potential in relation to the predecessor-merge
pair. The result of the simulation is the optimization potential
for each potential duplication. The entire approach is based
on a depth-first traversal of the dominator tree [5] as outlined
in the simulation part of Figure 2.
Traversing the dominator tree during simulation is ben-

eficial as it allows us to use the information of dominating
conditions for optimization. Every split in the control-flow
graph narrows the information for a dominating condition’s
operands. For example, an instruction if (a != null)
has two successors in the dominator tree: the true and the
false branch. In a depth first traversal of the true branch

Dominance-Based Duplication Simulation (DBDS) CGO’18, February 24–28, 2018, Vienna, Austria

Sort by
+ Cycles Saved
+ Code Size
+ Probability

Trade-Off Optimization

bp1

bs

bm2

bp2

bm1

bm

1
2

3

Duplication
Simulation
Traversal

bp1

bs

bm

bp2

CFG Optimized CFG

bp1'

bs

bp2'

Simulation

Sim Result 1

Sim Result 2

Sim Result 3

Sim Result 4

Sim Result n

shouldDuplicate(simResult)

Sim Result 1 Sim Result 2

bp1

bs

bm

bp2

Sim Result 1

Sim Result 2

Duplicate Optimize
Opt 1

...

Opt n

Sim Result

Dominator
Tree Depth

First
Traversal

Opt 1
...

Opt n

Sim Result

Figure 2. DBDS Algorithm Schematic.

we know that (a != null) holds. We use this additional
control-flow-sensitive information for optimization.
During the depth first traversal, every time we process

a basic block bpi , which has a merge block successor bm in
the CFG (as seen by the gray background in Figure 2), we
pause the current traversal and start a so-called duplication
simulation traversal (DST). The DST re-uses the context in-
formation of the paused depth-first traversal and starts a
new depth-first traversal at block bpi . However, in the DST
we process block bm directly after block bpi as if bpi would
dominate bm . In other words, we extend the block bpi with
the instructions of block bmi . The index i indicates a special-
ization of bm to the predecessor bpi .

This way we simulate a duplication operation. This is the
case because in the original CFG, duplicating instructions
from bmi into bpi effectively appends them to the block bpi .
As every block trivially dominates itself, the first instruction
of bpi dominates its last instruction and therefore also the
duplicated ones.

Consider the sample program f in Figure 3a and its domi-
nator tree in Figure 3b. Program f consists of 4 basic blocks:
the start block bs , the true branch bp1, the false branch bp2
and the merge block bm . We simulate a duplication opera-
tion by starting two DSTs at block bp1 and bp2. This can be
seen in Figure 3c by the dashed arrows. We process bmi in
both DSTs as if it were dominated by bpi . We perform each
DST until the first instruction after the next merge or split
instruction.
During the DSTs we need to determine which optimiza-

tions are enabled after duplication. Therefore, we split up our
optimization phases into two parts, the precondition and the
action step. This scheme was presented by Chang et al. [8].
The precondition is a predicate that holds if a given IR pat-
tern can be optimized. The associated action step performs
the actual transformation. Based on the preconditions we
derive boolean functions called applicability checks (AC) that
determine if a precondition holds on a given IR pattern. We
build ACs and action steps for all optimizations presented

in Section 2. Additionally, we modify the action steps to not
change the underlying IR but to return new (sub)graphs con-
taining the result of the optimization. We use the result of the
action steps to estimate a peak performance increase and a
code size increase. We compare the resulting IR nodes of the
action step with the original IR. There are several possible
results of the action step:
• Empty: The action step was able to eliminate the node(s).
• New Node: The action step returns new nodes that repre-
sent the semantics of the old ones and will replace them.
• Redundant Node: The action step found out that an in-
struction in a dominating block already computed the
same result, so the redundant node can be eliminated.

Based on this comparison we compute a numeric peak per-
formance increase estimation by using a static performance
estimator for each IR node. The performance estimator re-
turns a numeric run time estimation (called cycles) as well as
a code size estimation for each IR node. We compute which
nodes are new or deleted and can therefore compute a cycles
saved (CS) measurement which tells us if a given optimiza-
tion might increase peak performance. We compute code
size increase in a similar fashion. The performance estimator
is based on a performance cost model for IR nodes. Each
IR node is given a cycle and size estimation that allows us
to compare two nodes (instructions) with each other (see
Section 5.3 for details).

As stated, we want to avoid copying any code during DST.
However, the code in bm still contains phi instructions and
not the input of a phi on the respective branch. Therefore,
we introduce the concept of so-called synonym mappings. A
synonym map maps a φ node to its input on the respective
DST predecessor of bmi . Before we descend into bmi , we
create the synonym map for all φ instructions in bmi based
on their inputs from bpi . We can see such a mapping in
Figure 3d, which shows the algorithm during the DST of the
blocks bs → bp2→ bm2. The synonym of relation in Figure 3d
shows a mapping from the constant 2 to the φ node. The
constant 2 is a synonym of the φ on the predecessor bp2.

CGO’18, February 24–28, 2018, Vienna, Austria David Leopoldseder et al.

During the simulation traversal we iterate all instructions
(nodes) of the block bm and apply ACs on them. If an AC
triggers, we perform the associated action step of the op-
timization, compute the CS and save it in a data structure
associated with the block pair < bpi ,bmi >. Additionally, we
save new IR nodes as synonyms for the original nodes. The
ACs access input nodes via the synonym map.

Figure 3d shows the steps of the algorithm during the tra-
versal. We save value and type information for each involved
IR node and update it regularly via the synonym mapping.
Eventually, we iterate the division operation (x / φ) in bm2
and apply a strength reduction [1] AC on it. It returns true
and we perform the action step. The action step returns a
new instruction (x >> 1), which we save as a synonym for
the division node. Our static performance estimator yields
that the original division needs 32 cycles to execute while
the shift only takes 1 cycle. Therefore, the cycles saved (CS)
is computed as 32 − 1 = 31, i.e., we estimate that performing
the duplication and subsequent optimizations reduces the
run time of the program by 31 cycles.
For completeness, we illustrate the optimized program

f in Figure 3e, which shows that all optimizations found
during simulation are indeed performed after duplication.
The result of the simulation tier is a list of simulation

results capturing the code size effect and the optimization
potential of each possible duplication in the compilation unit
(see trade-off part in the middle of Figure 2).

4.2 Trade-off
We want to avoid code explosion and unnecessary (in terms
of optimization potential) duplication transformations. To
do so, we consider the benefits of the duplication candidates
discovered during the simulation tier. Based on their op-
timization potential (benefit) and their cost we select the
most promising ones for duplication. This can be seen in
the middle part of Figure 2. We take the candidates from the
simulation tier and sort them by benefit, cost and probability.
We then decide for each candidate if it is beneficial enough
to perform the associated duplication. The decision is made
by a trade-off function, that tries to maximize peak perfor-
mance while minimizing code size increase. The trade-off
function is based on cost and benefit. We formulate it as the
boolean function shouldDuplicate(bpi ,bm ,bene f it , cost)
(see Section 5.4). It decides if a given duplication transfor-
mation should be performed. All duplication candidates for
which shouldDuplicate returns true are passed to the op-
timization tier.

4.3 Optimization
The last tier of the algorithm is the actual optimization step.
Based on the decisions made during the trade-off we per-
form code duplication and the action steps of all the selected
optimizations.

If

jmpjmp

Merge

a b

>

φ

2

x

Dominance Relation Return

bs

bp1 bp2

bm

Data-flow Node
Control-flow Edge

Data-flow Edge
Association

Control-flow Node

Div

(a) Example program f .

bp1

bs

bmbp2

(b) Program f
dominator tree.

bp1

bs

bm2

bp2

bm1

bm

Basic Block

Dominates
Simulation

(c) Program f Duplication
Simulation.

If

a b

>

jmp

Div

x

Return

2

φ

bs

bp2

bm2
>>

1

Synonym of

(d) Example during duplication
simulation.

a b

>

1

Div

bs

RightShift

Return Return

x
If

bp1 bp2

(e) Example After Duplication.

Figure 3. Sample Program f .

5 Implementation
We implemented the DBDS algorithm in the Graal com-
piler [11, 25], a dynamically optimizing compiler for the
HotSpot VM [26]. Graal is a Java just-in-time (JIT) compiler,
which is itself written in Java. We use a particular version
of HotSpot called GraalVM in which Graal replaces C2 [27]

Dominance-Based Duplication Simulation (DBDS) CGO’18, February 24–28, 2018, Vienna, Austria

@NodeInfo (c y c l e s = CYCLES_8 , c y c l e s R a t i o n a l e =
" t l a b a l l o c + heade r i n i t " , s i z e = SIZE_8)

public abstract class AbstractNewObjectNode { . . . }

Listing 7. Node cost annotation for AbstractNewObjectNode.

as HotSpot’s standard top-tier JIT compiler. Graal gener-
ated code is comparable in performance to C2 generated
code [28].

5.1 System Overview
Graal translates Java bytecode to machine code in multiple
steps. The compilation process is divided into a front end
and a back end. From the parsed bytecodes Graal IR is gen-
erated [11]. The front end performs platform-independent
high-level Java optimizations such as inlining and partial
escape analysis [31]. The IR is then lowered into a platform
specific version on which additional optimizations and reg-
ister allocation are done. In a final step machine code is
emitted.

5.2 Implementation Details
We implemented the DBDS algorithm in the front end of
Graal. We first simulate duplications on all predecessor-
merge pairs in our IR, sort them by benefit and cost and
finally perform the optimization step. The entire DBDS algo-
rithm (simulate→ trade-off→ optimize) is applied iteratively
with a maximum upper bound of 3 iterations. This is neces-
sary because we currently do not support duplication over
multiple merges at a time. One duplication can enable an-
other opportunity for optimization after duplication, which
requires another iteration of the DBDS algorithm. We only
run another iteration if the cumulative benefit of the previ-
ous one is above a certain threshold. This only applies for
about 20% of all compilation units. Additionally, subsequent
iterations of DBDS will consider new merges first and only
expand to already visited ones if there is sufficient budget
left. Duplication can be stopped for two reasons:
• Every compilation unit is given a code size increase bud-
get, which is currently set to 50%. If the resulting IR size
(computed by size estimations not IR node count) reaches
this budget, we stop duplicating.
• There is an upper bound for the size of a compilation
unit defined by the VM because of internal restrictions.
If this bound is reached, we stop duplicating.

We explain the details of our trade-off heuristic in Section 5.4.

Applicability Checks in Graal Graal already supported
a limited form of ACs through the canonicalizable interface,
which implements simple optimizations like constant fold-
ing and strength reduction as operations on IR nodes. We
extended those ACs with the ones presented in Section 2.

5.3 Node Cost Model
In order to be able to annotate IR nodes with meta informa-
tion for the static performance estimation we came up with
an IR node cost model that models abstract performance and
code size costs for each IR node.
We express the meta information as Java Annotations1

per node class with enumeration values for the estimated
cycles and code size. The costs are designed to be platform
agnostic. Listing 7 shows the AbstractNewObjectNode class
with an annotation specifying the cycles and code size of
this IR node. We implemented the node cost annotations
for over 400 different nodes in the Graal compiler. Based on
these annotations, we can compute the costs and benefits of
(sub)graphs. Additionally, we use probability information
at each control-flow split to determine relative basic block
execution frequencies. The probability information is gen-
erated from HotSpot’s [26] profiling information [32]. We
use a basic block’s execution frequency relative to the maxi-
mum frequency of a compilation unit to scale the benefit of
a duplication candidate (see Section 5.4).
Figure 4 shows some IR before and after duplication to-

gether with the respective benefit computations. In this ex-
ample the constant folding after duplication reduced the
run-time of the program by 1.8 cycles.

5.4 Budget-based Duplication Heuristic
The most important part of our algorithm is the trade-off
tier as it decides what to duplicate. We developed a func-
tion shouldDuplicate(bpi ,bm ,bene f it , cost) that decides
for one duplication at a time, if it should be performed. Dur-
ing the development of the DBDS algorithm, 3 factors turned
out to be most important for the trade-off decision:
1. Compilation Unit Maximum Size: HotSpot limits us on the

size of the installed code per compilation unit.2 Therefore,
we cannot increase code size arbitrarily.

2. Code Size Increase Budget: In theory, code size increase
is only limited by the number of duplication opportuni-
ties. However, we do not want to increase the code size
beyond a certain threshold. More code always increases
the workload for subsequent compiler phases.

3. Probability: We decided to use profiling information to
guide duplication. We compute the product of the relative
probability of an instruction with respect to the entire
compilation unit and the estimated cycles saved. We sort
duplication candidates based on these values and optimize
the most likely and most beneficial ones first.

1https://docs.oracle.com/javase/tutorial/java/annotations/declaring.html
2This is configurable with the option -XX:JVMCINMethodSizeLimit, which
is 655360 bytes by default.

https://docs.oracle.com/javase/tutorial/java/annotations/declaring.html

CGO’18, February 24–28, 2018, Vienna, Austria David Leopoldseder et al.

Data-flow Node
Control-flow Edge

Data-flow Edge

Duplicate

Merge

Store

Return

Mul

φ

Association

Const 3

Param0

Store

Return

Mul

Const 3

90% Probability
Predecessor

Param0

Store

Return

Const 990% Probability
Predecessor

10% Probability
Predecessor 10% Probability

Predecessor

2 Cycles

2 Cycles

10 Cycles
2 Cycles

2 Cycles
10 Cycles

10 Cycles

2 Cycles

Time = (0.1 + 0.9) * (10 + 2 + 2) = 14 Cycles Time = (0.1*(10 + 2 + 2) + (0.9*(10+2)) =
1.4 + 10.8 = 12.2 Cycles

Control-flow Node

Figure 4. Node cost model example.

Based on the above observations we derived the following
trade-off heuristic:

c . . . Cost
b . . . Benefit
p . . . bpi Probability
cs . . . Compilation Unit Size
is . . . Compilation Unit Initial Size
I B . . . Code Size Increase Budget = 1.5
MS . . .Max Compilation Unit Size
BS . . . Benefit Scale Factor = 256

(b × p × BS) > c ∧ (cs < MS) ∧ (cs + c < is × I B)

(shouldDuplicate)

We decide upon the value of duplications by computing
their cost / benefit ratio. We allow the cost to be 256× higher
than the benefit. We derived the constant 256 during empiri-
cal evaluation. It turned out to generate the best results for
the benchmarks presented in Section 6. The budget increase
(currently set to 1.5 for 150%) represents the maximum code
size increase.

6 Evaluation
We evaluated our implementation of the DBDS algorithm on
top of the GraalVM,3 by running and analyzing a number of
industry-standard benchmarks.

6.1 Environment
All benchmarks were executed on a cluster of Sun X3-2
servers, all equipped with two Intel Sandy Bridge Xeon E5-
2660 CPUs running at a clock speed of 2.2GHz. Each CPU
features 8 cores. The entire package is equipped with 256GB
DDR3-1600 memory. GraalVM performs compilation in back-
ground threads concurrently to the interpreter executing the
program.We ran each benchmark with three different config-
urations: baseline (DBDS disabled), DBDS (DBDS enabled)
and dupalot (DBDS enabled but without cost/benefit trade-
off). The dupalot configuration uses the simulation tier to
find opportunities for duplications and performs them as

3 Version 0.26 https://graalvm.github.io/

long as there is any benefit, without caring about costs. We
now give a short description of the benchmark suites.

Java Dacapo [3] is a well-known benchmark suite for
Java containing 14 benchmarks4 testing JIT compilation-,
garbage collection-, file I/O- and networking performance.

Scala DaCapo [29] is the complementary DaCapo bench-
mark suite for the Scala5 programming language, which
compiles to JVM bytecode [21]. Scala workloads typically
differ from Java workloads (as described by Stadler et al. [30])
in their type and class hierarchy behavior.

Micro Benchmarks: We use a micro-benchmark suite
consisting of Java and Scala micro benchmarks addressing
novel JVM features (since Java 8) like streams and lambdas.

JavaScript Octane [6] is a widely used JavaScript bench-
mark suite containing workloads ranging from 500 LOC to
300 000 LOC. The suite addresses JIT compilation, garbage
collection, code loading and parsing of the executing JS VM.
We measured Octane performance using Graal JS [34], the
JavaScript implementation on top of Truffle, which is com-
petitive in performance to Google’s V8 [16]. Graal JS is on
average 17% slower compared to the V8 JavaScript VM [34].
Truffle [34, 35] is a self-optimizing AST interpreter frame-
work built on top of Graal. It uses partial evaluation [15] to
produce compilation units for AST functions. Those com-
pilation units are compiled by Graal to produce machine
code.
We measured three different metrics in our experiments:

Peak performance, code size and compile time.
Peak performance is reported by each benchmark suite

itself. Java DaCapo, Scala Dacapo and the micro benchmarks
report performance in milliseconds per iteration. JS Octane
measures throughput performance and reports a throughput
score after execution.
Compile time is measured programmatically in the com-

piler itself. Graal supports timing statements that are used
throughout the compiler.

4 We excluded the benchmarks eclipse, tomcat, tradebeans and tradesoap as
they are no longer supported by JDK versions > 8u92.
5https://www.scala-lang.org/

https://graalvm.github.io/
https://www.scala-lang.org/

Dominance-Based Duplication Simulation (DBDS) CGO’18, February 24–28, 2018, Vienna, Austria

Code size is measured with a counter that tracks machine
code size after code installation and constant patching.

For each configuration we executed the entire benchmark
suite 10 times. We excluded the warm-up of each benchmark
by only measuring performance after the point when com-
pilation frequency stabilizes. We took the arithmetic mean
of the last iterations after warm-up for each execution. For
the visualization, we normalized the DBDS and the dupalot
configuration to the duplication-disabled baseline.

peak perform
ance

com
pile tim

e
code size

avro
ra

batik fop h2
jyth

on
luindex

lusearch pmd
sunflow

xalan

-8%

-4%

0%

4%

8%

-50%

0%

50%

100%

150%

-50%

0%

50%

100%

150%

DBDS dupalot

Geometric Mean
Configuration peak performance compile time code size

DBDS 0.99 % 24.92 % 15.90 %
dupalot −0.14 % 50.08 % 38.22 %

Figure 5. Duplication Java DaCapo; peak performance (higher is
better), compile time (lower is better), code size (lower is better).

6.2 Results
The results of our experiments can be seen in the boxplots [14]
in Figures 5 to 8. The configuration of interest is the DBDS
one, which implements the presented DBDS algorithm. The
dupalot configuration allows us to prove that the proposed
trade-off tier used by the DBDS configuration indeed reduces
code size and compile time compared to the dupalot con-
figuration. Ideally, the DBDS configuration performs signif-
icantly better in terms of code size and compile time than
the dupalot configuration while producing the same peak
performance improvements.

Peak Performance: The peak performance impact of the
DBDS optimization varies over the different benchmark suites.
In the mean the DBDS configuration increases peak perfor-
mance by 5.89%. The Octane suite and the micro benchmarks
show the highest peak performance increases with increases
up to 40%, whereas benchmark suites such as Java DaCapo
benefit less from duplication.

peak perform
ance

com
pile tim

e
code size

acto
rs

apparat
facto

rie
kia

ma
sca

lac

sca
ladoc

sca
lap

sca
larifo

rm
sca

latest
sca

laxb
specs tmt

-10%

0%

10%

20%

0%

100%

200%

300%

0%
50%

100%
150%
200%
250%

DBDS dupalot

Geometric Mean
Configuration peak performance compile time code size

DBDS 3.15 % 11.32 % 6.88 %
dupalot 2.07 % 28.40 % 26.27 %

Figure 6. Duplication Scala DaCapo; peak performance (higher is
better), compile time (lower is better), code size (lower is better).

peak perform
ance

com
pile tim

e
code size

akka
PP

bufdecode

charco
unt

charhist

chisq
uare

groupbyre
m

km
eanC

PCA

stre
amPerso

n

wordcount

-20%

0%

20%

40%

-10%
0%

10%
20%
30%
40%
50%

-20%

0%

20%

40%

DBDS dupalot

Geometric Mean
Configuration peak performance compile time code size

DBDS 8.07 % 15.38 % 11.53 %
dupalot 8.57 % 26.41 % 25.78 %

Figure 7. Java/Scala Micro Benchmarks; peak performance (higher
is better), compile time (lower is better), code size (lower is better).

Java Dacapo shows 3% improvements on jython and 4% on
luindex. DBDS also performs considerably well on the Scala
Dacapo workloads with improvements of up to 15%.

CGO’18, February 24–28, 2018, Vienna, Austria David Leopoldseder et al.

peak perform
ance

com
pile tim

e
code size

box2d

code-load

deltablue

earley-b
oyer

gameboy

mandreel

navie
r-st

okes
pdfjs

raytra
ce

regexp
rich

ards
splay

typ
escr

ipt
zlib

0%

20%

40%

0%

20%

40%

60%

80%

0%

40%

80%

DBDS dupalot

Geometric Mean
Configuration peak performance compile time code size

DBDS 8.81 % 22.48 % 7.31 %
dupalot 6.66 % 42.63 % 25.58 %

Figure 8. Duplication Graal JS Octane Benchmarks; peak perfor-
mance (higher is better), compile time (lower is better), code size
(lower is better).

The micro benchmark suite illustrates how the dynamic
features of Scala and Java 8 create opportunities for dupli-
cation optimizations. Elimination of redundant type checks
and opportunities for escape analysis are the reason for most
peak performance increases that range from 5–40%.
Code Size & Compile Time: Compile time increases are

very stable across all benchmarks ranging between 11–30%
with a mean of 18.44% for the DBDS configuration. For the
presented benchmarks, we can see that not performing all
duplication opportunities always results in less code and
shorter compilation times.

DBDS vs. dupalot: If we compare the compile times and
the code size of the DBDS and dupalot configuration, DBDS
is always better then the dupalot configuration (sometimes
by a factor of 2), but achieves similar peak performance. For
some benchmarks the DBDS configuration produces even
faster machine code than the dupalot configuration. There
are some benchmarks where the dupalot configuration is
slightly faster than the DBDS configuration: e.g. the akkaPP
benchmark from the micro benchmark suite. However, the
compile time and code size metrics show that the dupalot
configuration performs significantly worse than the DBDS
configuration. Those benchmarks where the dupalot con-
figuration generates faster code than the DBDS configuration
are target for further optimizations and investigation.
The presented benchmarks show that duplicating code

for every possible opportunity is not necessarily a good idea.

There are even benchmarks where performing all duplication
opportunities reduces peak performance: E.g. the octane ray-
trace benchmark is 15% slower in the dupalot configuration
than in the baseline.

7 Related Work
Replication was proposed by Mueller and Whalley [23, 24] to
optimize away conditional and unconditional branches. They
perform duplication with the purpose of removing condi-
tional and unconditional branches. Their approach is related
to DBDS in that DBDS also duplicates code to remove condi-
tional branches (see conditional elimination opportunity in
Section 2).

Splitting [7] is an approach developed in the context of the
Self compiler to tackle the problems of virtual dispatch [18].
Splitting is related to DBDS in many aspects. The self com-
piler performs splitting to specialize code after control-flow
merges to the values used in predecessor branches. Chambers
[7] describes Self’s splitting heuristics which are based on
the frequency of the code paths that are optimized (weight)
and the cost of a duplication (code size). We extended their
ideas (reluctant splitting, eager splitting and the combination
of both) by using a fast duplication simulation algorithm in
order to estimate the peak performance impact of the du-
plication before doing it. Additionally, we improved upon
their idea of weight and cost by using a static performance
estimator, to estimate the peak performance increase of a
duplication transformation, and real profiling information
from the VM to only optimize those parts of the program
that are often executed.
Advanced Scheduling approaches like Trace-, Superblock-

and Hyperblock-scheduling [13, 17, 22] apply code duplica-
tion in order to increase the instruction level parallelism
(ILP) of a compilation unit. Those approaches differ from
DBDS in what they want to achieve. They apply tail duplica-
tion [8] in order to extended basic blocks by forming traces/-
superblocks/hyperblocks. Those structures increase ILP [33],
which is needed to properly optimize code for VLIW pro-
cessors which require elaborate compiler support to gener-
ate efficient instructions. Depending on the target structure
(trace, superblock, hyperblock) the employed heuristics dif-
fer, but in general the optimization potential established by
duplication is not analyzed in advance, as it is not needed
for instruction selection and scheduling.

Ball [2] estimates the effects of subsequent optimizations
on inlined functions by using a data flow analysis on the
inlinee to derive parameter dependency sets for all variables.
Those dependency sets collect all expressions influencing
the computation of a variable. The effect of an optimization
can then be estimated by propagating constant parameters
through the dependent computations. The approach could
be adapted to work on φ inputs instead of parameters to
estimate the impact of φ inputs on subsequent code. DBDS

Dominance-Based Duplication Simulation (DBDS) CGO’18, February 24–28, 2018, Vienna, Austria

improves upon the approach by enabling a larger set of
optimizations including control-flow dependent ones.

Bodík et al. [4] perform complete partial redundancy elim-
ination (PRE) using duplication. They use duplication as a
tool to enable PRE and also to compute in advance which
duplications are necessary. We improved their ideas by com-
puting a general set of optimizations that are enabled by
duplication.

8 Conclusion and Future Work
In this paper we presented a novel approach that allows a
compiler to decide which duplications should be performed
in order to improve peak performance. The approach is based
on an algorithm that combines simulation, trade-off and opti-
mization into a three-tier process that enables optimizations
after duplication. The simulation tier finds beneficial dupli-
cation candidates, which are then weighed up against each
other in the trade-off tier, which tries to maximize peak per-
formance while minimizing code size and compilation time.

We implemented our algorithm in the Graal compiler and
showed that the approach can improve peak performance
by up to 40% (with a mean of 5.89%) at a mean compilation
time increase of 18.44% and code size increase of 9.93%.
In the future we want to tune our optimization tier. The

current optimization tier implementation cannot duplicate
over multiple merges along paths although the simulation
tier can simulate along paths. We want to conduct experi-
ments evaluating how complex a path-based implementation
would be, and if we can increase peak performance even fur-
ther.

Finally, we plan to validate the presented IR performance
estimator. We are planning to conduct experiments validat-
ing a correlation between our benefit and cost estimations
and the real performance and code size of an application.

References
[1] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler

Transformations for High-performance Computing. ACM Comput.
Surv. 26, 4 (Dec. 1994), 345–420. DOI:http://dx.doi.org/10.1145/197405.
197406

[2] J. Eugene Ball. 1979. Predicting the Effects of Optimization on a
Procedure Body. SIGPLAN Not. 14, 8 (Aug. 1979), 214–220. DOI:http:
//dx.doi.org/10.1145/872732.806972

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The
DaCapo Benchmarks: Java Benchmarking Development and Analysis.
In Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications. ACM Press, 169–
190. DOI:http://dx.doi.org/10.1145/1167473.1167488

[4] Rastislav Bodík, Rajiv Gupta, and Mary Lou Soffa. 1998. Complete
Removal of Redundant Expressions. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion. ACM, 1–14. DOI:http://dx.doi.org/10.1145/277650.277653

[5] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. 1997. Value
numbering. Software-Practice and Experience 27, 6 (1997), 701–724.

[6] Stefano Cazzulani. 2012. Octane: The JavaScript benchmark suite for
the modern web. Retrieved December 21 (2012), 2015.

[7] Craig David Chambers. 1992. The Design and Implementation of the
Self Compiler, an Optimizing Compiler for Object-oriented Programming
Languages. Ph.D. Dissertation. Stanford, CA, USA. UMI Order No.
GAX92-21602.

[8] Pohua P. Chang, Scott A. Mahlke, and Wen-mei W. Hwu. 1991. Using
Profile Information to Assist Classic Code Optimizations. Softw. Pract.
Exper. 21, 12 (Dec. 1991), 1301–1321. DOI:http://dx.doi.org/10.1002/
spe.4380211204

[9] Cliff Click and Keith D. Cooper. 1995. Combining Analyses, Combining
Optimizations. ACM Trans. Program. Lang. Syst. 17, 2 (March 1995),
16. http://doi.acm.org/10.1145/201059.201061

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Trans. Program.
Lang. Syst. 13, 4 (Oct. 1991), 40. DOI:http://dx.doi.org/10.1145/115372.
115320

[11] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon,
Christian Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An
Extensible Declarative Intermediate Representation. In Proceedings of
the Asia-Pacific Programming Languages and Compilers Workshop.

[12] Gilles Duboscq, ThomasWürthinger, Lukas Stadler, ChristianWimmer,
Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate Rep-
resentation for Speculative Optimizations in a Dynamic Compiler. In
Proceedings of the ACMWorkshop on Virtual Machines and Intermediate
Languages. DOI:http://dx.doi.org/10.1145/2542142.2542143

[13] Joseph A. Fisher. 1995. Instruction-level Parallel Processors. IEEE
Computer Society Press, Chapter Trace Scheduling: A Technique for
Global Microcode Compaction, 186–198. http://dl.acm.org/citation.
cfm?id=201749.201766

[14] Michael Frigge, David C. Hoaglin, and Boris Iglewicz. 1989. Some
Implementations of the Boxplot. The American Statistician 43, 1 (1989),
50–54. http://www.jstor.org/stable/2685173

[15] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Process–
An Approach to a Compiler-Compiler. Higher-Order and Symbolic
Computation 12, 4 (01 Dec 1999), 381–391. DOI:http://dx.doi.org/10.
1023/A:1010095604496

[16] Google. 2012. V8 JavaScript Engine. (2012). http://code.google.com/p/
v8/

[17] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P.
Chang, Nancy J. Warter, Roger A. Bringmann, Roland G. Quellette,
Richard E. Hank, Tokuzo Kiyohara, Grant E. Haab, John G. Holm,
and Daniel M. Lavery. 1995. Instruction-level Parallel Processors.
IEEE Computer Society Press, Chapter The Superblock: An Effec-
tive Technique for VLIW and Superscalar Compilation, 234–253.
http://dl.acm.org/citation.cfm?id=201749.201774

[18] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Ko-
matsu, and Toshio Nakatani. 2000. A Study of Devirtualization
Techniques for a Java Just-In-Time Compiler. In Proceedings of the
15th ACM SIGPLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA ’00). ACM, 294–310. DOI:
http://dx.doi.org/10.1145/353171.353191

[19] David Leopoldseder, Lukas Stadler, Christian Wimmer, and Hanspeter
Mössenböck. 2015. Java-to-JavaScript Translation via Structured Con-
trol Flow Reconstruction of Compiler IR. In Proceedings of the 11th
Symposium on Dynamic Languages (DLS 2015). ACM, New York, NY,
USA, 91–103. DOI:http://dx.doi.org/10.1145/2816707.2816715

[20] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. 1999. Per-
formance Estimation of Embedded Software with Instruction Cache
Modeling. ACM Trans. Des. Autom. Electron. Syst. 4, 3 (1999), 257–279.
DOI:http://dx.doi.org/10.1145/315773.315778

http://dx.doi.org/10.1145/197405.197406
http://dx.doi.org/10.1145/197405.197406
http://dx.doi.org/10.1145/872732.806972
http://dx.doi.org/10.1145/872732.806972
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/277650.277653
http://dx.doi.org/10.1002/spe.4380211204
http://dx.doi.org/10.1002/spe.4380211204
http://doi.acm.org/10.1145/201059.201061
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/2542142.2542143
http://dl.acm.org/citation.cfm?id=201749.201766
http://dl.acm.org/citation.cfm?id=201749.201766
http://www.jstor.org/stable/2685173
http://dx.doi.org/10.1023/A:1010095604496
http://dx.doi.org/10.1023/A:1010095604496
http://code.google.com/p/v8/
http://code.google.com/p/v8/
http://dl.acm.org/citation.cfm?id=201749.201774
http://dx.doi.org/10.1145/353171.353191
http://dx.doi.org/10.1145/2816707.2816715
http://dx.doi.org/10.1145/315773.315778

CGO’18, February 24–28, 2018, Vienna, Austria David Leopoldseder et al.

[21] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2015.
The Java Virtual Machine Specification, Java SE 8 Edition. http://docs.
oracle.com/javase/specs/jvms/se8/jvms8.pdf

[22] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank,
and Roger A. Bringmann. 1995. Instruction-level Parallel Processors.
IEEE Computer Society Press, Chapter Effective Compiler Support for
Predicated Execution Using the Hyperblock, 161–170. http://dl.acm.
org/citation.cfm?id=201749.201763

[23] Frank Mueller and David B. Whalley. 1992. Avoiding Unconditional
Jumps by Code Replication. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. ACM,
322–330. DOI:http://dx.doi.org/10.1145/143095.143144

[24] Frank Mueller and David B. Whalley. 1995. Avoiding Conditional
Branches by Code Replication. In Proceedings of the ACM SIGPLANCon-
ference on Programming Language Design and Implementation. ACM,
56–66. DOI:http://dx.doi.org/10.1145/207110.207116

[25] OpenJDK 2013. Graal Project. (2013). http://openjdk.java.net/projects/
graal

[26] OpenJDK 2017. HotSpot Virtual Machine. (2017). http://openjdk.java.
net/groups/hotspot/

[27] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java
HotSpot™ Server Compiler. In Proceedings of the Java Virtual Machine
Research and Technology Symposium. USENIX, 1–12.

[28] Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and
Thomas Würthinger. 2017. Making Collection Operations Optimal
with Aggressive JIT Compilation. In Proceedings of the 8th ACM SIG-
PLAN International Symposium on Scala (SCALA 2017). ACM, NewYork,
NY, USA, 29–40. DOI:http://dx.doi.org/10.1145/3136000.3136002

[29] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder.
2011. Da Capo con Scala: design and analysis of a scala benchmark
suite for the java virtual machine. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and

Applications. ACM Press, 657–676.
[30] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, Thomas

Würthinger, and Doug Simon. 2013. An Experimental Study of the In-
fluence of Dynamic Compiler Optimizations on Scala Performance. In
Proceedings of the 4th Workshop on Scala (SCALA ’13). ACM, New York,
NY, USA, Article 9, 8 pages. DOI:http://dx.doi.org/10.1145/2489837.
2489846

[31] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014.
Partial Escape Analysis and Scalar Replacement for Java. In Proceedings
of the International Symposium on Code Generation and Optimization.
ACM Press, 165–174. DOI:http://dx.doi.org/10.1145/2544137.2544157

[32] April W. Wade, Prasad A. Kulkarni, and Michael R. Jantz. 2017. AOT
vs. JIT: Impact of Profile Data on Code Quality. In Proceedings of the
18th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES 2017). ACM, New York, NY, USA,
1–10. DOI:http://dx.doi.org/10.1145/3078633.3081037

[33] David W. Wall. 1991. Limits of Instruction-level Parallelism. In Pro-
ceedings of the Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS IV).
ACM, New York, NY, USA, 176–188. http://doi.acm.org/10.1145/106972.
106991

[34] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,
and Matthias Grimmer. 2017. Practical Partial Evaluation for High-
performance Dynamic Language Runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI 2017). ACM, New York, NY, USA, 662–676. DOI:
http://dx.doi.org/10.1145/3062341.3062381

[35] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. 2012. Self-optimizing AST in-
terpreters. In Proceedings of the 8th symposium on Dynamic languages
(DLS ’12). ACM Press, 73–82.

http://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
http://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
http://dl.acm.org/citation.cfm?id=201749.201763
http://dl.acm.org/citation.cfm?id=201749.201763
http://dx.doi.org/10.1145/143095.143144
http://dx.doi.org/10.1145/207110.207116
http://openjdk.java.net/projects/graal
http://openjdk.java.net/projects/graal
http://openjdk.java.net/groups/hotspot/
http://openjdk.java.net/groups/hotspot/
http://dx.doi.org/10.1145/3136000.3136002
http://dx.doi.org/10.1145/2489837.2489846
http://dx.doi.org/10.1145/2489837.2489846
http://dx.doi.org/10.1145/2544137.2544157
http://dx.doi.org/10.1145/3078633.3081037
http://doi.acm.org/10.1145/106972.106991
http://doi.acm.org/10.1145/106972.106991
http://dx.doi.org/10.1145/3062341.3062381

	Abstract
	1 Introduction
	2 Optimization Opportunities after Code Duplication
	3 Finding Optimization Opportunities after Code Duplication
	3.1 Backtracking
	3.2 Simulation

	4 Dominance-based Duplication Simulation
	4.1 Simulation
	4.2 Trade-off
	4.3 Optimization

	5 Implementation
	5.1 System Overview
	5.2 Implementation Details
	5.3 Node Cost Model
	5.4 Budget-based Duplication Heuristic

	6 Evaluation
	6.1 Environment
	6.2 Results

	7 Related Work
	8 Conclusion and Future Work
	References

