
Parallel Trace Register Allocation∗

Josef Eisl

Institute for System Software

Johannes Kepler University Linz

Austria

josef.eisl@jku.at

David Leopoldseder

Institute for System Software

Johannes Kepler University Linz

Austria

david.leopoldseder@jku.at

Hanspeter Mössenböck

Institute for System Software

Johannes Kepler University Linz

Austria

hanspeter.moessenboeck@jku.at

ABSTRACT
Register allocation is a mandatory task for almost every compiler

and consumes a signi�cant portion of compile time. In a just-in-time

compiler, compile time is a particular issue because compilation

happens during program execution and contributes to the overall

application run time. Parallelization can help here. We developed a

theoretical model for parallel register allocation and show that it

can be used in practice without a negative impact on the quality of

the allocation result. Doing so reduces compilation latency, i.e., the

duration until the result of a compilation is available.

Our analysis shows that parallelization can theoretically decrease

allocation latency by almost 50%. We implemented an initial pro-

totype which reduces the register allocation latency by 28% when

using four threads, compared to the single-threaded allocation.

CCS CONCEPTS
• Software and its engineering → Compilers; Just-in-time
compilers; Dynamic compilers; Virtual machines;

KEYWORDS
trace register allocation, concurrent register allocation, parallel

register allocation, just-in-time compilation, dynamic compilation,

virtual machines, task scheduling

ACM Reference Format:
Josef Eisl, David Leopoldseder, and Hanspeter Mössenböck. 2018. Parallel

Trace Register Allocation. In 15th International Conference on Managed
Languages & Runtimes (ManLang’18), September 12–14, 2018, Linz, Austria.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3237009.3237010

1 INTRODUCTION
Compilation latency, i.e., the duration required to compile a given

method, is an important metric of just-in-time compilers. If com-

pilation happens on the main thread, latency has a signi�cant im-

pact on response time, since the execution of the application is

delayed. Even for systems with one or more background compi-

lation threads [Krintz et al., 2001], short latencies mean that the

compiled code is available earlier and can therefore reduce the

warm-up time of an application. In contrast to most other opti-

mizations, register allocation, i.e., the task of mapping a potentially

∗
Work-in-Progress Research Paper

ManLang’18, September 12–14, 2018, Linz, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The de�nitive Version of Record was published in 15th International
Conference on Managed Languages & Runtimes (ManLang’18), September 12–14, 2018,
Linz, Austria, https://doi.org/10.1145/3237009.3237010.

unlimited number of variables to a �xed set of physical registers, is

mandatory for all compilers that target a register machine, which

is the predominant architecture today. The quality of the register

allocation has a high impact on the performance of the generated

machine code [Hennessy and Patterson, 2003], even on modern

architectures [Eisl et al., 2017]. Thus, most optimizing compilers

spend a signi�cant amount of time on register allocation.

Traditionally, high quality register allocation is done on a global

scope, i.e., on the whole compilation unit (method) at once. Graph

coloring [Chaitin et al., 1981] or linear scan [Poletto and Sarkar,

1999] are common global approaches. In contrast to that, Eisl [2015]

proposed trace register allocation as a non-global alternative. The
idea is to divide a control-�ow graph into linear code segments, so-

called traces, and to solve the register allocation problem for those

independently. Later, the intermediate results are merge to build

a solution for the whole compilation unit. Recent results suggest

that the approach is on par with state-of-the-art global approaches
in terms of allocation quality [Eisl et al., 2016] as well as compile

time [Eisl et al., 2017].

Since traces are allocated independently, this approach o�ers

more �exibility than global allocators. Eisl et al. [2017] selected

di�erent allocation strategies which either yield good allocation

quality or fast allocation time, based on the expected trace execu-

tion frequency. They evaluated di�erent policies which reduced

allocation time by up to 43% on average. However, this reduction

comes at a peak performance penalty of about 11%.

In this work we leverage the �exibility of trace register allocation

to reduce compilation latency without impacting peak performance.

To do so, we use multiple threads to allocate traces concurrently.

We built a prototype based on the idea and were able to reduce the

register allocation latency by 28%. In summary, we contribute the

following:

• A trace dependency model for minimizing synchronization

e�ort and avoiding a negative performance impact due to

parallelization.

• An analysis of the parallelization potential in trace register

allocation.

• A proof-of-concept implementation of a parallel trace register

allocator.

• An empirical evaluation of our prototype using the Da-

Capo [Blackburn et al., 2006] and Scala-DaCapo [Sewe et al.,

2011] benchmarks.

In the remainder of the paper we will recap the trace register alloca-

tion approach, describe how we can allocate registers concurrently

with minimal synchronization e�ort, show that there is potential

https://doi.org/10.1145/3237009.3237010
https://doi.org/10.1145/3237009.3237010


ManLang’18, September 12–14, 2018, Linz, Austria Josef Eisl, David Leopoldseder, and Hanspeter Mössenböck

Linear Scan

Trivial Trace

Bo�om-Up

for each trace

Global Liveness Analysis

Trace Building

Data-flow Resolution

Allocate trace

ThreadThreadThreadThread

qu
eu
e

Left (gray): Phases that are only executed once per method. Right

(blue): Allocation strategies that are used for processing a single trace,
potentially in parallel.

Figure 1: Overview of our framework

B1

B2

B3

B8

B4 B6

B5

B7

T0 T1 T2 T3

hot

cold

Control-�ow graph (blocks and solid edges), trace (dashed boxes)

and trace dependency graph (dashed arrows).

Figure 2: Control-�ow graph divided into traces

for parallelization and present preliminary results of our implemen-

tation prototyped in GraalVM, a production quality Java virtual

machine developed by Oracle.
1

2 BACKGROUND ON TRACE REGISTER
ALLOCATION

Our idea extends previous work on trace register allocation by Eisl

et al. [2016, 2017]. In this section we review trace register allocation

before we propose our extensions in Section 3.

In contrast to global register allocation, which processes a whole

method at once, trace register allocation divides the problem into

smaller sub-problems, so-called traces, for which register alloca-

tion can be done independently for each trace. Figure 1 shows the

components of the trace register allocation framework.

Trace Building. The trace building algorithm takes the basic

blocks of a control �ow graph as its input and returns a set of

traces. Traces are non-empty and non-overlapping and every basic

block is contained in exactly one trace. Figure 2 illustrates the result

of the trace building step.

Global Liveness Analysis. To capture the liveness of variables at

trace boundaries, a global liveness analysis is required. For every

inter-trace edge, i.e., an edge that connects two traces, we compute

a live set. The analysis is done in a single iteration over the basic

1
https://github.com/oracle/graal

blocks, similar to the liveness analysis described by Wimmer and

Franz [2010] for SSA-based linear scan register allocation.

Allocate Traces. For each trace, the algorithm selects an allocation
strategy. Due to the explicit global liveness information, allocating

a trace is completely decoupled from the allocation of other traces.

Eisl et al. [2017] proposed 3 allocation strategies:

The trace-based linear scan algorithm is an adaption of the global

approach by Wimmer and Mössenböck [2005] to the properties of

a trace. The main di�erence of the trace-based approach is that

there is no need to maintain a list of live ranges for each lifetime

interval, since there are no lifetime holes [Traub et al., 1998] in trace

intervals. Trace-based linear scan register allocation produces code

that is on average as fast as code produced by global linear scan

register allocation [Eisl et al., 2016].

The trivial trace allocator is a special-purpose allocator for traces
which have a speci�c structure. They consist of a single basic block

which contains only a single jump instruction. Such blocks are

introduced by splitting critical edges,2 and are quite common. For

the DaCapo benchmark suite about 40% of all traces are trivial [Eisl

et al., 2016]. A trivial trace can be allocated by mapping the variable

locations at the beginning of the trace to the locations at the end of

the trace. Eisl et al. [2017] showed that using the trace-based linear
scan algorithm in combination with the trivial trace allocator is as
fast as a state-of-the-art global linear scan approach [Wimmer and

Mössenböck, 2005] in terms of allocation time.

In order to decrease compilation time, Eisl et al. [2017] proposed

using a third allocation strategy, the bottom-up allocator. Its goal is

to allocate a trace as fast as possible, potentially sacri�cing code

quality. Eisl et al. [2017] reported that the compile time of the

bottom-up allocator is up to 40% faster than for the trace-based

linear scan algorithm. However, this comes with an 11% slowdown

in peak performance on average. We do not want to sacri�ce peak

performance for this work, thus we do not use the bottom-up allo-

cation strategy.

Data-�ow Resolution. The location of a variable can be di�erent

across an inter-trace edge. The data-�ow resolution phase �xes up

those mismatches and ensures a valid solution.

3 PARALLEL TRACE REGISTER
ALLOCATION

Traces can be allocated in arbitrary order. However, traces that are

processed later can incorporate decisions from already allocated

traces. Eisl et al. [2016] described two optimizations based on that

principle, inter-trace hinting and spill information sharing. Inter-
trace hints are suggestions to the allocator to favor a certain location

for a variable. The aim is to decrease the number of resolution

moves on inter-trace edges. Spill information sharing records if a

variable that is currently stored in a register has a copy on the stack.

That means it has already been spilled in a predecessor trace. Due to

static-single assignment (SSA) form [Cytron et al., 1991], the value

stored in a variable never changes statically. Therefore, if it has

been spilled to the stack it will stay the same during the lifetime of

the variable. It is never necessary to respill it. These optimizations

2
An edge is critical if the source block has multiple successors and the target block

has multiple predecessors.

https://github.com/oracle/graal


Parallel Trace Register Allocation ManLang’18, September 12–14, 2018, Linz, Austria

can improve the peak performance for some DaCapo benchmarks

by up to 15% [Eisl et al., 2016].

The information the allocator requires for both optimizations is

stored together with the live sets and is local to an inter-trace edge.

Although the optimizations are fully optional, the quality of the

result depends on the order in which traces are allocated. Therefore,

traces are allocated in the order of their execution frequency.

3.1 Dependency Model
For this study, we want to ensure that concurrent allocation does

not in�uence allocation quality. Therefore, we de�ne dependencies

in a way that all the information available in the serial mode is

also available in the parallel mode. The dashed arrows in Figure 2

show the dependency graph. Traces are numbered in the order

of their expected execution frequency. In serial mode, they would

be allocated in ascending order, i.e., T0,T1,T2,T3. However, since

T1 and T2 are independent of each other, they can be allocated in

parallel. The dependencies form a partial ordering of the traces.

4 CONCURRENCY POTENTIAL
Before considering implementation details, we want to gain more

insight whether there is potential for parallelization. Therefore, we

simulated the potential improvements when using 2, 4 and 8 threads

for register allocation of the benchmarks from DaCapo and Scala-

DaCapo, two commonly used Java virtual machine benchmark

suites based on real-world applications [Blackburn et al., 2006;

Sewe et al., 2011].

Not all traces require the same time for allocation. We use the

number of instructions as a compile time estimator since it correlates

with the time required for register allocation [Eisl et al., 2017]. The

lower bound for register allocation latency is the length of the

critical path in the dependency graph. Our experiments show that

the geometric mean [Fleming and Wallace, 1986] of the critical

path length is 51% (min = 44%, max = 57%) of the number of

instructions in the compilation unit. That means that ideally, with

in�nite threads and ignoring all overheads, the register allocation

step could be done in about half the time.

To simulate the potential with a given number of threads, we

need to �nd a schedule that satis�es the dependencies. Finding

an optimal schedule with minimal duration is NP-hard [Pinedo,

2016]. Therefore, we apply a simple heuristic for �nding a schedule.

Whenever a thread is idle, we select the longest trace in terms of

instructions.

For 2 threads, the simulated allocation latency goes down to

68% (64%, 71%). This is already an interesting result since adding

only a single thread to the system can potentially improve register

allocation latency by about 30%. Another noteworthy metric is the

utilization of the threads, that is the ratio between work and idle
time. For 2 threads this ratio is 74% (70%, 78%), which means that

allocation threads are idle only one fourth of their run time.

If 4 threads are used, the simulated allocation latency is 56%

(50%, 61%) of the single threaded case. However, the utilization also

decreases to 45% (41%, 50%). The threads are idle more than half of

the time.

T0

T1 T3 T18

T4 T8 T10T2 T5 T14

T6 T7 T12 T9 T11

T15 T16T13

T17

(36)

(16)

(2)

(19)

(14)(15)

(2) (5)

(10)

(2)

(7)

(2)(6)

(2)

(5)

(7) (7)

(7)

(4)

Dependency graph for the method PrintStream#write. The values
in parentheses are the lengths of the traces, i.e., the number of in-

structions. The critical path (T0–T17, orange edges) is 84 instructions

long.

Figure 3: Trace Dependency Graph

With 8 allocation threads the allocation latency is 52% (45%, 58%)

and is almost on the level of the optimal critical path case (51%). As

expected, the utilization further decreases to 24% (22%, 28%).

4.1 Example
Let us illustrate the simulation approach with an example. We

chose the method PrintStream#write3 from the Java standard

library. After high-level optimizations (e.g. inlining) there are 19

traces. Their dependencies are depicted in Figure 3. The values in

parentheses are the trace lengths in number of instructions. The
compilation unit consists of 168 instructions in total, which is also

the length of the single threaded schedule.

Figure 4 shows the calculated schedule as a Gantt chart [Gantt,
1913] for 2, 4 and 8 threads (top, middle, bottom, respectively). Each

rectangle represents a trace. The horizontal axis depicts the length

in terms of instructions.
The length of the schedule with 2 threads is 104 instructions with

a utilization of 81%. With 4 threads the utilization decreases to 50%.

However, the length of 84 is already optimal, i.e., the critical path
length. Therefore, increasing the number of threads to 8 cannot

yield any improvements and utilization drops to 25%. Figure 4 also

shows that although 8 threads are available, only 5 are used.

5 PRELIMINARY EMPIRICAL EVALUATION
To verify that the theoretic results presented in Section 4 also apply

in practice, we did a proof-of-concept implementation of the paral-

lel trace register allocation approach. More speci�cally, we wanted

to ensure that parallel register allocation (1) can improve register

allocation latency, and (2) does not impact allocation quality. To

see whether these goals can be ful�lled, we implemented the paral-

lelization approach in the trace register allocator which is part of

GraalVM [Eisl et al., 2016, 2017].

3
See java.io.PrintStream#write(byte[], int, int)

https://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html#write-byte:A-int-int-


ManLang’18, September 12–14, 2018, Linz, Austria Josef Eisl, David Leopoldseder, and Hanspeter Mössenböck

0
1 2

3 4
5

6
78

910
11

12
1314

15 16
17

18

2
Th.

0
1

2

3 4
5

6
7

8 9
10 11

12 13

14
15

16
17

18

4
Threads

0
1

2

3 4
5 6

7
8 9

10 11

12 13

14
15

16

17

18

8
Threads

0 10 20 30 40 50 60 70 80 90 100

Gantt chart [Gantt, 1913] for 2, 4 and 8 threads. The horizontal axis denote the number of instructions.

Figure 4: Trace Allocation Scheduling for PrintStream#write

5.1 GraalVM
The GraalVM is a Java virtual machine based on the HotSpot VM.

The performance of GraalVM is similar or even better than HotSpot

VM [Prokopec et al., 2017; Simon et al., 2015; Stadler et al., 2013].

Graal uses two di�erent intermediate representations (IR). In the

front end, Graal performs optimizations such as inlining, partial

escape analysis [Stadler et al., 2014], and code duplication [Leopolds-

eder et al., 2018], to name just a few. It uses a graph-based IR in

static single assignment (SSA) form [Duboscq et al., 2013].

After applying all optimizations, the graph-based representation

is converted to a low-level control-�ow-graph-based IR before en-

tering the back end. First, the LIR still adheres to SSA form. The back

end’s main responsibility is register allocation and code generation.

The register allocator also translates the IR out of SSA form by

replacing φ-functions with move instructions.

5.2 Parallel Register Allocator Implementation
To empirically verify our approach, we added a simple proof-of-
concept implementation. Since Graal itself is written in Java, we can

utilize the concurrency primitives provided by the Java standard

library. We used one Java thread pool4 with a �xed pool size for all

allocation threads. Idle threads are kept alive to avoid the thread

starting overhead. Once a trace is allocated, all its successors are

added to the work queue, given that all their dependencies are

already allocated. We use a priority queue5 where traces are ordered
by decreasing instruction count, so that longer traces are allocated

�rst. From the register allocation point of view, synchronization is

only needed for the queue and for tracking �nished dependencies.

Accessing andmodifying traces is safe by design of the trace register

allocator if the dependencies are respected. However, Graal assumes

that every method is compiled by just a single thread. We worked

around this assumption, for example, by pre-populating cached

maps, duplicating data-structures or simply recalculating results.

These workarounds cause allocation time overheads, which we are

willing to accept for our prototype. We are con�dent that most of

them could be mitigated by a more advanced implementation.

4
See java.util.concurrent.ThreadPoolExecutor

5
See java.util.concurrent.PriorityBlockingQueue

5.3 Methodology
By default, GraalVM uses multiple compiler threads to concurrently

compile di�erent methods. Compilation happens in the background,

that means the application continues to execute while a method

is compiled. The compiler threads compete with the application

threads. Adding threads for register allocation makes the situation

even more challenging. To keep this interference low, we only use

one (background) compiler thread that can access up to 8 register
allocation threads. To measure register allocation latency, we take

a timestamp
6
before and after register allocation and report the

di�erence, i.e., the duration. In other words, it is the time elapsed

from the beginning of register allocation until it is �nished and

the result is available. Naturally, the numbers are in�uenced by the

scheduling of threads by the virtual machine. For example, if the

VM decides to preempt the register allocation threads in favor of an

application thread, the duration increases although the compiler or

allocator did not perform more work. More precisely, the duration
does not represent CPU time. However, the metric of duration is

what we are interested in, since the goal is not to reduce the work
that is done by the allocator but to have the result available earlier.

5.4 Hardware Environment
We performed the experiments on a cluster of 64 identical Sun

Server X3-2 machines,
7
equipped with two Intel "Sandy Bridge"

Xeon E5-2660 at 2.20GHz with 8 real cores per processor, and 256GB

of DDR3-1600 memory. The machines were running an Oracle

Linux Server 6.8 operating system with Linux Kernel version 4.1.12.

For the experiments we disabled all frequency scaling modes (e.g.

scaling governors or Intel Turbo Boost).

For every experiment, we randomly selected a node from the

cluster to execute a benchmark suite (DaCapo or Scala-DaCapo)

with a single con�guration. For every benchmark we started a new

Java VM with an initial and maximum heap size of 8GB. To avoid

distortion due to node switching, we �xed the CPU and the memory

of the JVM to a single NUMA node using the hwloc-bind utility.
8

For each con�guration, we collected at least 20 results.

6
See java.lang.System#nanoTime()

7
Sun Server X3-2: http://docs.oracle.com/cd/E22368_01/

8
hwloc-bind(1) — Linux man page: https://linux.die.net/man/1/hwloc-bind

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/PriorityBlockingQueue.html
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--
http://docs.oracle.com/cd/E22368_01/
https://linux.die.net/man/1/hwloc-bind


Parallel Trace Register Allocation ManLang’18, September 12–14, 2018, Linz, Austria

40%

50%

60%

70%

80%

90%

100%

110%

120%

40%

50%

60%

70%

80%

90%

100%

110%

120%

Global
LSRA

No RA
Threads

1 RA
Thread

2 RA
Threads

4 RA
Threads

8 RA
Threads

DaCapo and Scala-DaCapo on AMD64. Values relative to themean of

the one register allocation thread con�guration. Table 1 summarizes

the results.

Figure 5: Register Allocation Latency (lower is better ↓)

5.5 Results
The experimental results are summarized in Figure 5 and Table 1.

Note that the reported values are the duration of register allocation,

including all necessary phases. For trace register allocation, this

includes trace building, global liveness analysis and global data-
�ow resolution. All numbers are relative to the con�guration with

one register allocation thread (1 RA Thread). This con�guration
uses the priority queue and the other synchronization mechanisms,

but the thread pool only consists of a single thread. To see the

overhead imposed by our prototype, we also compare against a

trace register allocation con�guration where all work was done

on the compiler thread (No RA Threads). The overhead of 23%

might seem high at �rst sight. However, as already mentioned

before, our implementation is an initial proof-of-concept prototype.

We are con�dent that this gap can be reduced by an advanced

implementation. To show that the trace register allocation approach

is on par with state-of-the-art allocators, we also include results for

Global LSRA, the global linear scan implementation used by default

in GraalVM.

To verify the question whether we can reduce allocation latency,

we evaluated the prototype with 2, 4, and 8 allocation threads. Using

2 threads instead of one decreases the latency by 20% (7%, 36%).

Increasing the thread count to 4 reduces the allocation latency by

28% (8%, 54%), compared to a single thread. As we already expected

from the potential analysis, using 8 threads does not yield any ad-

vantages. In fact, the result is slightly worse than with four threads.

This is due to the additional synchronization e�ort and the fact that

we are close to the number of hardware threads.

The second assumption we wanted to verify in this evaluation is

that parallel register allocation does not a�ect allocation quality. To

do so, we report steady-state performance in Figure 6 and Table 1.

For the DaCapo-style benchmarks, this is the time for an iteration

after the benchmark has warmed up. Ideally, in this iteration the

VM does not perform any compilation, although that is not always

the case [Barrett et al., 2017]. The results in Figure 6 and Table 1

suggest that parallel register allocation has no negative impact on

allocation quality.

40%

50%

60%

70%

80%

90%

100%

110%

120%

40%

50%

60%

70%

80%

90%

100%

110%

120%

Global
LSRA

No RA
Threads

1 RA
Thread

2 RA
Threads

4 RA
Threads

8 RA
Threads

DaCapo and Scala-DaCapo on AMD64. Values relative to themean of

the one register allocation thread con�guration. Table 1 summarizes

the results.

Figure 6: Benchmark Execution Time (lower is better ↓)

RA Bench. Execution Time Reg. Allocation Latency

Threads gm max med min gm max med min

None 100 101 100 98 77 91 81 48

1 100 100 100 100 100 100 100 100

2 100 101 100 98 80 93 80 64

4 100 101 100 99 72 92 71 46

8 100 101 100 97 73 97 72 41

Values in percent (%) relative to one register allocation thread (RA

Threads). We present geometric mean (gm), minimum (min), median

(med), and maximum (max) results for benchmark execution time

and register allocation latency.

Table 1: Experimental Results (lower is better ↓)

6 RELATEDWORK
Eisl et al. [2016] already suggested that the trace register allocation

approach can be extended to parallel allocation. We veri�ed their

idea, described a dependency model, analyzed the potential and

evaluated a prototype.

6.1 Concurrent Compilation
Just-in-time compilers often apply concurrency techniques to im-

prove compilation performance. The HotSpot VM, for example,

executes the compilers in background threads [Kotzmann et al.,

2008]. So does V8, Google’s JavaScript engine [McIlroy, 2018]. The

advantage of this approach is that the main thread can continue ex-

ecuting the program, for example, in an interpreter, while a method

compiles. HotSpot also uses multiple compiler threads [Oracle Cor-

poration, 2015]. The synchronization overhead is low. Compilation

threads need to synchronize at the beginning when taking a method

from the compilation queue and at the end when installing the code.

The compiler itself can be single-threaded. Also, adding more com-

piler threads scales well, as long as there are enough methods in

the queue. Background compilation on multiple threads improves

throughput, i.e., the number of units compiled in a given time frame

[Krintz et al., 2001]. However, it cannot improve compilation la-

tency of a single method. This is in contrast to our parallel register

allocation approach.



ManLang’18, September 12–14, 2018, Linz, Austria Josef Eisl, David Leopoldseder, and Hanspeter Mössenböck

6.2 Trace and Region-based Compilation
In this work we focused on method-based compilation where the

input to the compiler is a method. Many method-based compilers

perform inlining to enable further optimization opportunities. To

keep the size of the compilation unit manageable, JIT compilers

such as Graal or the HotSpot server compiler replace infrequent

branches with deoptimization [Hölzle et al., 1992; Stadler et al.,

2013]. Instead of compiling code for such branches the execution is

continued in the interpreter. Trace-based compilers, for example

Dynamo by Bala et al. [2000] or the HotSpot client compiler modi-

�cations by Häubl et al. [2013], follow a di�erent approach. They

trace frequent execution paths and use them as a compilation unit.

Conceptionally, the idea is similar to trace register allocation but

extended to the whole compilation process. Although the compila-

tion of such a trace cannot be parallelized, multiple traces can be

compiled concurrently. Therefore, trace-based compilation reduces

compilation latency. The same applies to region-based compila-

tion [Hank et al., 1995], where the compilation units consists of

more complex control structures than linear traces.

6.3 Register Allocation Approaches
To the best of our knowledge, parallel register allocation approaches

have not been described in literature. However, we looked at exist-

ing approaches to �nd out whether the same idea could be applied

there. Since we do not have access to their implementation, this

analysis is more a thought experiment than a thorough comparison.

Traditional global approaches such as graph coloring [Chaitin et al.,

1981] or (global) linear scan [Poletto and Sarkar, 1999] are out of

question, since they work per design on the whole compilation

unit.

Callahan and Koblenz [1991] proposed hierarchical graph col-
oring where the compilation unit is organized in a tree of tiles,
that are non-overlapping sets of basic blocks. Register allocation is

performed in a bottom-up (leafs-to-root) and a top-down (root-to-

leafs) phase. Tiles are related to traces in our approach, and the tree

representation can o�er parallelization potential. However, explicit

synchronization is required as information is shared between tiles.

A related idea was proposed by [Lueh et al., 1997] under the

name graph-fusion-based register allocation. Their allocator works
on regions of the control-�ow, for example a basic block or a loop,

and builds the interference graph for it. The graphs for regions

that are connected via an edge are then fused to get the combined

graph. Although there is some potential for parallelizing the graph

building and simpli�cation, most of the work is delayed until the

complete graph is available. In contrast to that, in trace register

allocation, the tasks are independent and are only connected via

value-location-maps at trace boundaries.

7 FUTURE DIRECTIONS
For this parallel trace register allocation experiment, we applied a

strict dependency model to guarantee the same results in serial and

parallel mode. All preceding traces with higher probability must

have been allocated before processing the succeeding trace. This

could be relaxed to only themost important predecessor, whichwould
open up more potential for parallelization. We used the number of

instructions as the priority function for selecting the next trace to

be processed. An alternative would be the number of successors in

the dependency graph, to enable more concurrency opportunities.

Eisl et al. [2017] proposed using the bottom-up allocator to improve

compile time based on allocation policies. In this work, we did not

investigate combining this idea with parallelization.

8 CONCLUSION
We presented a parallel register allocator based on trace register
allocation. Since traces which do not depend on each other can be

allocated concurrently by di�erent threads, the approach reduces

compilation latency without impacting the allocation quality, i.e.,

peak performance. The analysis of common Java benchmarks re-

vealed that there is almost 50% improvement potential for reducing

register allocation latency. Compared to a single thread, our proto-

typical implementation reduces register allocation latency by 20%,

28%, or 27% for 2, 4, or 8 allocation threads, respectively.

Although our prototype is in an early stage, the results show

that parallel register allocation is practical and can improve compi-

lation latency. It further underlines the �exibility of trace register

allocation.

ACKNOWLEDGMENTS
We thank the GraalVM community, the Virtual Machine Research

Group at Oracle Labs and the Institute for System Software at the

Johannes Kepler University Linz for their support and feedback

on this work. We also thank the anonymous reviewers for their

valuable feedback. Josef Eisl and David Leopoldseder are funded in

part by a research grant from Oracle Labs.

REFERENCES
Bala, Vasanth, Evelyn Duesterwald, and Sanjeev Banerjia (2000). Dynamo: A Transpar-

ent Dynamic Optimization System. In: PLDI ’00. ACM. doi: 10.1145/349299.349303.

Barrett, Edd, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Laurence

Tratt (2017). Virtual MachineWarmup Blows Hot and Cold. In: Proc. ACM Program.

Lang. doi: 10.1145/3133876.

Blackburn, S. M. et al. (2006). The DaCapo Benchmarks: Java Benchmarking Develop-

ment and Analysis. In: OOPSLA’06. ACM Press. doi: 10.1145/1167473.1167488.

Callahan, David and Brian Koblenz (1991). Register Allocation via Hierarchical Graph

Coloring. In: SIGPLAN Not. doi: 10.1145/113446.113462.

Chaitin, Gregory J,Marc AAuslander, Ashok KChandra, JohnCocke,Martin EHopkins,

and Peter W Markstein (1981). Register Allocation via Coloring. In: Computer

languages. doi: 10.1016/0096-0551(81)90048-5.

Cytron, Ron, Jeanne Ferrante, Barry K. Rosen, Mark N.Wegman, and F. Kenneth Zadeck

(1991). E�ciently Computing Static Single Assignment Form and the Control

Dependence Graph. In: TOPLAS’91. doi: 10.1145/115372.115320.

Duboscq, Gilles, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon,

and Hanspeter Mössenböck (2013). An Intermediate Representation for Speculative

Optimizations in a Dynamic Compiler. In: VMIL’13. doi: 10.1145/2542142.2542143.

Eisl, Josef (2015). Trace Register Allocation. In: SPLASH Companion 2015. ACM. doi:

10.1145/2814189.2814199.

Eisl, Josef, Matthias Grimmer, Doug Simon, Thomas Würthinger, and Hanspeter

Mössenböck (2016). Trace-based Register Allocation in a JIT Compiler. In: PPPJ ’16.
ACM. doi: 10.1145/2972206.2972211.

Eisl, Josef, Stefan Marr, Thomas Würthinger, and Hanspeter Mössenböck (2017). Trace

Register Allocation Policies: Compile-time vs. Performance Trade-o�s. In:ManLang
2017. ACM. doi: 10.1145/3132190.3132209.

Fleming, Philip J. and John J. Wallace (1986). How Not To Lie With Statistics: The

Correct Way To Summarize Benchmark Results. In: Communications of the ACM.

doi: 10.1145/5666.5673.

Gantt, Henry Laurence (1913).Work, Wages, and Pro�ts. Second Edition. The Engineer-
ing Magazine Co.

Hank, R.E., W.W. Hwu, and B.R. Rau (1995). Region-based compilation: an introduction

and motivation. In: Proceedings of the 28th Annual International Symposium on

Microarchitecture. doi: 10.1109/micro.1995.476823.

https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/3133876
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/113446.113462
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/2814189.2814199
https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1145/3132190.3132209
https://doi.org/10.1145/5666.5673
https://doi.org/10.1109/micro.1995.476823


Parallel Trace Register Allocation ManLang’18, September 12–14, 2018, Linz, Austria

Häubl, Christian, Christian Wimmer, and Hanspeter Mössenböck (2013). Context-

sensitive trace inlining for Java. In: Computer Languages, Systems & Structures.

doi: 10.1016/j.cl.2013.04.002.

Hennessy, John L. and David A. Patterson (2003). Computer Architecture: A Quantitative
Approach. 3rd ed. Morgan Kaufmann Publishers Inc. isbn: 1558607242.

Hölzle, Urs, Craig Chambers, and David Ungar (1992). Debugging Optimized Code

with Dynamic Deoptimization. In: SIGPLAN Not. doi: 10.1145/143103.143114.

Kotzmann, Thomas, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez,

Kenneth Russell, and David Cox (2008). Design of the Java HotSpot™ client compiler

for Java 6. In: TACO’08. doi: 10.1145/1369396.1370017.

Krintz, Chandra J., David Grove, Vivek Sarkar, and Brad Calder (2001). Reducing

the overhead of dynamic compilation. In: Software: Practice and Experience. doi:

10.1002/spe.384.

Leopoldseder, David, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and

Hanspeter Mössenböck (2018). Dominance-based Duplication Simulation (DBDS)

– Code Duplication to Enable Compiler Optimizations. In: CGO’18. ACM. doi:

10.1145/3168811.

Lueh, Guei-Yuan, Thomas Gross, and Ali-Reza Adl-Tabatabai (1997). “Global register

allocation based on graph fusion”. In: Lecture Notes in Computer Science. Springer
Berlin Heidelberg. doi: 10.1007/BFb0017257.

McIlroy, Ross (2018). V8 JavaScript Engine: Background compilation. url: https : / /
v8project . blogspot . co . at / 2018 / 03 /background - compilation .html (visited on

03/28/2018).

Oracle Corporation (2015). JRockit to HotSpot Migration Guide: Compilation Optimiza-
tion. url: https://docs.oracle.com/javacomponents/jrockit-hotspot/migration-

guide/comp-opt.htm (visited on 03/28/2018).

Pinedo, Michael L. (2016). Scheduling: Theory, Algorithms, and Systems. 5th ed. Springer

International Publishing. doi: 10.1007/978-3-319-26580-3.

Poletto, Massimiliano and Vivek Sarkar (1999). Linear Scan Register Allocation. In:

TOPLAS’99. doi: 10.1145/330249.330250.

Prokopec, Aleksandar, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger

(2017). Making Collection Operations Optimal with Aggressive JIT Compilation.

In: SCALA 2017. ACM. doi: 10.1145/3136000.3136002.

Sewe, Andreas, Mira Mezini, Aibek Sarimbekov, and Walter Binder (2011). Da capo

con scala. In: OOPSLA’11. doi: 10.1145/2048066.2048118.

Simon, Doug, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas Stadler, and

Thomas Würthinger (2015). Snippets: Taking the High Road to a Low Level. In:

TACO’15. doi: 10.1145/2764907.

Stadler, Lukas, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and

Doug Simon (2013). An Experimental Study of the In�uence of Dynamic Compiler

Optimizations on Scala Performance. In: SCALA’13. ACM. doi: 10.1145/2489837.

2489846.

Stadler, Lukas, Thomas Würthinger, and Hanspeter Mössenböck (2014). Partial Escape

Analysis and Scalar Replacement for Java. In: CGO ’14. ACM. doi: 10.1145/2544137.

2544157.

Traub, Omri, Glenn Holloway, and Michael D. Smith (1998). Quality and Speed in

Linear-scan Register Allocation. In: PLDI ’98. ACM. doi: 10.1145/277650.277714.

Wimmer, Christian and Michael Franz (2010). Linear Scan Register Allocation on SSA

Form. In: CGO’10. ACM. doi: 10.1145/1772954.1772979.

Wimmer, Christian and Hanspeter Mössenböck (2005). Optimized Interval Splitting in

a Linear Scan Register Allocator. In: VEE’05. ACM. doi: 10.1145/1064979.1064998.

https://doi.org/10.1016/j.cl.2013.04.002
https://doi.org/10.1145/143103.143114
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1002/spe.384
https://doi.org/10.1145/3168811
https://doi.org/10.1007/BFb0017257
https://v8project.blogspot.co.at/2018/03/background-compilation.html
https://v8project.blogspot.co.at/2018/03/background-compilation.html
https://docs.oracle.com/javacomponents/jrockit-hotspot/migration-guide/comp-opt.htm
https://docs.oracle.com/javacomponents/jrockit-hotspot/migration-guide/comp-opt.htm
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/3136000.3136002
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1145/2764907
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/277650.277714
https://doi.org/10.1145/1772954.1772979
https://doi.org/10.1145/1064979.1064998

	Abstract
	1 Introduction
	2 Background on Trace Register Allocation
	3 Parallel Trace Register Allocation
	3.1 Dependency Model

	4 Concurrency Potential
	4.1 Example

	5 Preliminary Empirical Evaluation
	5.1 GraalVM
	5.2 Parallel Register Allocator Implementation
	5.3 Methodology
	5.4 Hardware Environment
	5.5 Results

	6 Related Work
	6.1 Concurrent Compilation
	6.2 Trace and Region-based Compilation
	6.3 Register Allocation Approaches

	7 Future Directions
	8 Conclusion
	Acknowledgments

