
Java-to-JavaScript Translation via Structured
Control Flow Reconstruction of Compiler IR

David Leopoldseder∗ Lukas Stadler† Christian Wimmer† Hanspeter Mössenböck∗

∗Institute for System Software, Johannes Kepler University Linz, Austria †Oracle Labs
david.leopoldseder@jku.at {lukas.stadler, christian.wimmer}@oracle.com

hanspeter.moessenboeck@ssw.jku.at

Abstract
We present an approach to cross-compile Java bytecodes to
JavaScript, building on existing Java optimizing compiler
technology. Static analysis determines which Java classes
and methods are reachable. These are then translated to
JavaScript using a re-configured Java just-in-time compiler
with a new back end that generates JavaScript instead of ma-
chine code. Standard compiler optimizations such as method
inlining and global value numbering, as well as advanced
optimizations such as escape analysis, lead to compact and
optimized JavaScript code. Compiler IR is unstructured, so
structured control flow needs to be reconstructed before code
generation is possible. We present details of our control flow
reconstruction algorithm.

Our system is based on Graal, an open-source optimizing
compiler for the Java HotSpot VM and other VMs. The mod-
ular and VM-independent architecture of Graal allows us to
reuse the intermediate representation, the bytecode parser,
and the high-level optimizations. Our custom back end first
performs control flow reconstruction and then JavaScript
code generation. The generated JavaScript undergoes a set
of optimizations to increase readability and performance.
Static analysis is performed on the Graal intermediate repre-
sentation as well. Benchmark results for medium-sized Java
benchmarks such as SPECjbb2005 run with acceptable per-
formance on the V8 JavaScript VM.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers

General Terms Compiler, Performance, Cross-Compilation,
Decompilation

Copyright c© ACM,
. This is the author’s version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version was published in
LS’15, http://dx.doi.org/10.1145/October 25-30, 2015, Pittsburgh, PA, USA.
,, D.
Copyright c© 2015 ACM 978-1-4503-3690-1/15/10. . . $15.00.
http://dx.doi.org/10.1145/2816707.2816715

Keywords Java, JavaScript, Graal, ahead-of-time compila-
tion, optimization

1. Introduction
JavaScript has become the standard language available in
every web browser. To make existing applications and li-
braries written in other languages usable in a browser, they
need to be translated to JavaScript. This makes JavaScript
the assembly language for code generators, despite its short-
comings such as a limited set of types. Languages such as
C [50], Java [16], and ActionScript [30] have been translated
to JavaScript in many different ways.

We present a novel approach to translate Java bytecodes
to JavaScript. Java is a mature language with a large ecosys-
tem for optimized execution. Java virtual machines such
as the Java HotSpot VM feature aggressively optimizing
just-in-time compilers. Our approach leverages this exist-
ing infrastructure: we provide a new back end for an ex-
isting compiler that generates JavaScript source code from
the compiler’s high-level intermediate representation (IR).
Since compiler IR usually allows unstructured control flow,
we need to reconstruct structured control flow before code
generation. We present the details of the algorithm in this
paper.

It is infeasible to translate all Java methods of an applica-
tion and its libraries to JavaScript, since that would include
the whole JDK. Therefore, we use static analysis to find
out which classes and methods are reachable from the main
method of the application, and only translate these reachable
parts. This allows us to translate large Java applications such
as the SPECjbb2005 benchmark [37]. However, static analy-
sis requires that all method invocations are symbolically ana-
lyzable, which precludes the usage of dynamic class loading
and reflection.

We use the Graal compiler [32], an aggressively optimiz-
ing Java just-in-time compiler written in Java itself. Graal
performs all standard compiler optimizations such as method
inlining, global value numbering, constant folding, condi-
tional elimination, strength reduction, and partial escape
analysis. When used as the optimizing just-in-time compiler

Graal Front End

Java
Bytecode

Static Analysis

Bytecode Parsing

Class Loading

Type Propagation

Java Bytecode Parser

Method Inlining

Global Value Numbering

Partial Escape Analysis

Constant Folding

...

Graal Back End

Structured Control Flow
Reconstruction

JavaScript Source Code
Generation

Fixpoint Analysis

Reachable Classes
and Methods

High-Level
Graal IR

Runtime Support
Libraries

JavaScript
Source

Build Time Run Time

JavaScript VM

Figure 1. System structure.

of the Java HotSpot VM, the peak performance of the gen-
erated code is comparable to that of the Java HotSpot server
compiler. Graal is modular and VM independent, which al-
lows us to use it as an ahead-of-time compiler, re-use all
high-level optimization on the IR, and only replace the back
end. The high-level optimizations improve the quality of the
generated JavaScript source code.

The output of our ahead-of-time JavaScript compiler,
henceforth called Graal AOT JS, is a single, standalone
JavaScript file that contains all reachable methods of all
application classes. This code is easy to deploy and can
be executed by the JavaScript VM without any additional
transformations necessary at run time. The ahead-of-time
compiled code is combined with a set of runtime support
libraries modeling Java-specific concepts not available in
JavaScript. Java objects are mapped to JavaScript objects,
i.e., the runtime libraries do not need to include a garbage
collector.

We demonstrate the feasibility of the approach with a set
of standard Java and JavaScript benchmarks. We compare
the generated JavaScript with native Java applications exe-
cuted on the HotSpot server compiler [33]. While the overall
performance heavily varies we can see a trend between 5x
and 15x slowdown of the Graal AOT JS generated code exe-
cuted on the V8 JavaScript VM to the HotSpot server VM. A
large portion of the slowdown is related to additional checks
in the generated code which are required by the Java seman-
tics. For smaller benchmarks performance is between 2x and
10x slower than handwritten JavaScript code. Graal AOT JS
can be used to compile arbitrary Java code to JavaScript. The
generated code is moderate in size and acceptable in perfor-
mance. Especially for websites the provided performance is
feasible.

In summary, this paper contributes the following:

• We present a novel approach for source code generation
from unstructured compiler intermediate representation.

• We describe an implementation of the approach to gener-
ate JavaScript source code from Java bytecodes.

• We use static analysis on the input bytecodes in combi-
nation with type flow analysis to decrease the resulting
code size.

• We present optimizations that improve the readability
and performance of the generated source code, leading
to a high amount of restructured control flow.

• We present a performance evaluation showing that the ap-
proach can handle larger Java applications and produces
reasonably fast JavaScript code.

2. System Structure
The presented ahead-of-time (AOT) compiler is based on
the Graal OpenJDK project [32] and the underlying Graal
virtual machine. Graal is a novel implementation of a Java
just-in-time compiler written in Java. It runs on a modifica-
tion of the HotSpot Java virtual machine. The Graal compiler
conventionally serves as a just-in-time compiler, but for the
purpose of compiling Java to JavaScript its capabilities have
been extended to support AOT compilation.

Graal’s compilation process is divided into a front end
and a back end. The front end performs platform-independent
Java-related optimizations like inlining or partial escape
analysis. The back end performs optimizations that are not
Java-specific like, e.g., read elimination, prepares the IR for
code generation, and performs register allocation. We use
the front end of Graal, but replace the default back end with
our own implementation.

Figure 1 shows an overview of our system. The figure
is divided into the two major parts of our system. The left
hand side shows the ahead-of-time compilation of Java to
JavaScript and the generation of JavaScript code. The first
part happens at build time. The right hand side denotes the
final standalone JavaScript application for deployment. At
run time, the generated code and support libraries modeling
the runtime system are executed by a JavaScript VM.

Static Analysis Compiling Java bytecodes ahead-of-time
has one major drawback: code size. Java programs heavily
use elaborate class libraries of the JDK. Thus, Java appli-

cations have numerous dependencies into the JDK, which
produce a large call tree even for simple applications such as
a trivial HelloWorld program. AOT compilation of a Java
program with all its dependencies is therefore not feasible.

As Java applications only use portions of the imported
classes, we need to remove unused methods and types. Our
approach uses static analysis offered by Graal to reduce the
size of the generated JavaScript code by removing unused
elements. The analysis is based on a closed world assump-
tion. For a given entry point method our analysis iteratively
processes all transitively reachable types, methods and fields
that are necessary to execute the code of the entry point
method. In this process all required types and their fields and
methods are identified. A complete call tree as well as a list
of used methods and types is built, which allows us, e.g., to
treat classes without subclasses as final.

Compilation Pipeline The following list describes the
steps of the compilation pipeline on a finer granularity:

1. Class loading: Classes are loaded, meta-information is
collected and all static initializers are executed. Several
optimizations require access to constants at compile-
time, therefore the associated classes need to be loaded
for compilation. Accessing constants at compile time
requires code generation to keep identity semantics for
all constants. Graal AOT JS writes constant as well as
static data created by static initializer methods to an ini-
tial JavaScript heap. Alternatively static initializers could
also be compiled to JavaScript, but this would prohibit
many optimizations.

2. Static analysis: The static analysis phase uses Graal to
build the IR for the methods encountered during analy-
sis. Every transitively reachable method is parsed and the
IR is built. Those parts of the class path that were not
discovered to be reachable can be excluded from compi-
lation. Discovering classes leads to class loading, i.e., the
first two steps are executed until a fixpoint is reached and
no more new classes are discovered.

3. Graal optimizations: Standard compiler optimizations of
Graal are applied to the IR, e.g., global value number-
ing [7], constant folding, strength reduction [3], con-
ditional elimination [38], method inlining, and partial
escape analysis [39]. We can leverage these sophisti-
cated compiler optimizations without any additional im-
plementation effort. The performance impact of some of
these optimizations is discussed in Section 5.

4. Graph canonicalization to structured control flow: A set
of control flow transformations rewrites certain structures
in the IR to produce structured control flow.

5. Control flow reconstruction optimization: The graph is
analyzed for structured control flow, additional structural
rewritings on the IR are performed and analysis informa-
tion is saved for code generation.

6. Code generation: Each type and method is processed and
JavaScript code is emitted using the information of the
previous step for generation of JavaScript control flow
statements.

Graal IR The intermediate representation of Graal [10,
11] is structured as a directed graph in static single assign-
ment (SSA) form [8]. Each IR node produces at most one
value. To represent data flow, a node has input edges pointing
to the nodes that produce its operands. To represent control
flow, a node has successor edges pointing to its successors.
In summary, the IR graph is a superposition of two directed
graphs: the data-flow graph and the control-flow graph. Note
that the two kinds of edges point in opposite directions.

In the front end, Graal IR mirrors the Java bytecodes
parsed during graph building. We use this high-level IR for
Graal AOT JS because it is still platform independent, i.e.,
it does not introduce concepts that have no high-level repre-
sentation in JavaScript. The disadvantage of using a higher-
level IR is that certain optimizations are not possible yet,
e.g., array bounds-check elimination as presented in [46]. In
the high-level IR, an array load is represented as a single
operation, not yet modeling the array bounds check.

3. Structured Control Flow Reconstruction
Generating structured JavaScript source code from possi-
bly unstructured Java bytecodes is challenging. A structured
program disallows jumps to arbitrary locations in the pro-
gram and consists of (or can be mapped to) a sequence of
structured high-level statements such as if, switch, and while
statements. Since Java bytecodes could have been written by
hand instead of being generated by a Java compiler such a
mapping is not always trivial to find. Furthermore, there are
several patterns in Java that introduce unstructured control
flow. We list two common ones of them below, but further
details can be found in [27]. Since Graal IR must be able to
cope with unstructured bytecodes it has to be unstructured,
too.

We use the standard terminology of a control flow graph
(CFG) and basic block. A control flow graph is a directed
graph modeling the control flow of a method. The nodes
of a CFG are basic blocks. A basic block denotes a list
of instructions with just one entry and one exit point, so
no jumps transfer control out of the basic block except for
the last instruction of the block. For the IR we introduce
the terms split and merge for special nodes. Split nodes are
nodes with more than one successor, whereas merge nodes
are nodes with more than one predecessor.

Compound Conditions Java’s short circuit evaluation of
compound conditions uses a common merge block. In Fig-
ure 2, for example, the false successor block for both evalu-
ations of a && b is the same.

Multi-Exit Loops Loops with multiple exits leading to
different successor nodes or loops with multiple backward

if(a&&b){
 // ...
}

If

If

... ...

Start

a

b

IR Node

Control-flow Edge

Data-flow Edge

false
false

true

true

Figure 2. Unstructured control flow: compound condition.

public static void f(int p) {
 block: {
 for (int i = 0; i < 10; i++) {
 if (i == p) {
 // exit entire labeled block

 break block;
}
// [1]: loop body

 }
 // normal loop exit path
 // [2]: statements only executed if loop is
 // exited through the loop condition
 }
 // merge of both exit paths
 // [3]: code executed after both loop exits
}

LoopBegin

If

[1]

Start

Condition

IR Node

Control-flow Edge

Data-flow Edge

If

Merge

[3]

[2]

LoopExit

LoopExit

return

truefalse

 true

Condition

false

Figure 3. Unstructured control flow: multi-exit loop.

edges are unstructured [5]. Figure 3 shows an example of a
multi-exit loop in Java. After the compilation to bytecodes
there is no corresponding high-level representation for the
given code snippet, except with the usage of labeled blocks.
Code generation using labeled blocks requires one labeled
block per loop exit. Graal AOT JS uses a different approach
for the reconstruction of multi-exit loops. Section 3.2 illus-
trates how we handle the reconstruction of multi-exit loops
in our compiler.

3.1 Control Flow Graph Block Interpreter
The presented examples of unstructured control flow moti-
vate the need for a generic solution for modeling arbitrary
control flow and for transforming it to structured control flow
in a high-level language like JavaScript. We use a generic so-
lution for modeling and transforming arbitrary control flow
during code generation. It is based on an approach for the re-
moval of goto statements presented by Erosa and Hendren
[12]. In the domain of control flow obfuscation the approach
is known as control flow flatting [20, 44]. Control flow is
expressed by an endless loop dispatching CFG successors
with a switch statement. Figure 4 illustrates the code result-
ing from a compound condition of the form a && b. Every
case in the switch statement is a basic block of the CFG.

if(a&&b){
 // work
}

[1] If

[2] If

[3]

Start

a

b

IR Node

Control-flow Edge

Data-flow Edge

true

false

true

false

[4] Merge

 int dispatch = 1;
 while (true) {
 switch (dispatch) {
 case 1:

 if (a) {
 dispatch = 2;
 } else {
 dispatch = 4;
 }
 break;

 case 2:
 if (b) {
 dispatch = 3;
 } else {
 dispatch = 4;
 }
 break;
case 3:
 // a && b evaluated
 // to true
 // work
 dispatch=5;
 break;
case 4:
 // a or b evaluated
 // to false
 dispatch = 5;
 break;
case 5:
 dispatch=6;
 break;
case 6:
 return;
default:
 throw new Exception();

 }
 }

[5] Merge

[6] Return

Figure 4. Control flow graph block interpreter.

This generic pattern, although elegant and easy to adapt, has
major disadvantages. The performance is between 2x and
> 10x slower than a structured representation of control
flow. In order to improve the performance and the readability
of the code it needs to be restructured.

3.2 Structured Control Flow Reconstruction
Algorithm

To produce efficient JavaScript code we have to model as
much control flow as possible with high-level control flow
structures. We present a novel approach for reconstructing
structured code from possibly unstructured control flow. Be-
low we refer to the graph tagging algorithm in particular, as
it marks the final structured control flow detection step. We
refer to [5] for the theory behind structured control flow and
its reconstruction.

Merging of Loop Exits To overcome the problem of hav-
ing different successors for multiple loop exits we use a
mechanism to have a structured set of loop exits. We merge
all loop exits on a common node. We introduce a switch that
dispatches the successors of the exits depending on the exit
that was taken out of the loop. Figure 5 shows the example
from Figure 3 after the merging of loop exits. Merging of
loop exits removes potentially unstructured control flow in-
troduced by a combination of multiple loop exits from the
loop body. This enables the structuring of the loop body. Al-
though control flow after the merge of all loop exits can be
unstructured, the loop can be compiled to a structured piece
of JavaScript code. Mapping the control flow of loops to
structured JavaScript statements is crucial for performance

since loops are the most frequently executed paths in a pro-
gram. The structural rewritings in the IR during the merging
of loops exits are intrinsic to the control flow reconstruction
algorithm, thus necessary for the structuring of loop exits.

Graph Tagging For the reconstruction of structured con-
trol flow we use a heuristic that is based on general con-
trol flow concepts and is not limited to our Graal IR. We
use the terms link and walk. A walk is an ongoing or cur-
rently stalled bottom-up traversal of the CFG to find struc-
tured sub-graphs. A link is a sub-graph that has already been
identified to be structured. During the walks previously es-
tablished links are skipped as they already contain structured
control flow. Final paths are those walks that start at an in-
struction, which has no successor in the CFG (except one
reached via a back edge), e.g., break, continue, throw and
return.

The control flow tagging algorithm is applicable to de-
duce structured control flow, thus to ease the process of anal-
ysis, Graal AOT JS applies a set of structural transforma-
tion prior to control flow analysis. Cases where a callee un-
winds with an exception and the caller unwinds to its caller
again are removed completely, as JavaScript supports native
exception handling. Exception handlers that cannot be re-
moved are rewritten to invocations followed by if-statements
that dispatch to the exception handler, which allows us to
analyze exception edges with the tagging algorithm. For un-
wind and return nodes we expand them across the IR to pro-
duce as many final paths as possible. For those graphs con-
taining unstructured control flow, or on which the tagging al-
gorithm bails out, code generation uses the block interpreter
as illustrated in Figure 4.

Our heuristic is based on the definition of structured con-
trol flow presented in [5]:

• All upward paths from a merge node m lead to the same
split node s. Similarly, all non-final downward paths from
a split node s lead to the same merge node m. In both
cases, there must not be other merge or split nodes be-
tween s and m except in links that are already known to
be structured.

• Every final path can always be mapped to JavaScript
code. A loop can always be exited early or continued and
a return can always be emitted in JavaScript.

• Additionally to the two definitions it is required that the
number of predecessors of merge node m is less than or
equal to the number of successors of the split node s.
There might be fewer predecessors of m than successors
of s if top-down paths starting at s are final.

In our algorithm (see Listing 1) we perform the following
steps:

1. From every merge node and from every final node tra-
verse all incoming edges upwards until a split or an-
other merge is encountered. Such a traversal is called a

walk (In Listing 1 this operation is denoted by the method
walkBack(curr,prev,start)).

2. If a merge is encountered during a walk do the following:
• If the merge is already associated with a split (-
isMergeOfLink(merge)), and is thus marked as being
structured, skip the entire link and continue the walk
at the split’s predecessor.

• If the merge is not associated with a split save the walk
in a map with the merge as the key, thus stall the en-
tire walk for possible later continuation (save(key,-
Walk(curr,prev,start))).

3. If a split is encountered during a walk do the following:
• If the split is already part of a link, i.e., if it has already

been encountered during a different walk, this can
only happen with unstructured control flow, thus abort
the walk.

• If the split is not yet part of a link, store this walk at
the split node. Once the number of stored walks for
a split node equals the number of successors for this
split node, check if all these walks started at the same
merge node. If so, consider the sub-graph between
the split and the merge as a link and consider it as
structured. As the sub-graph between the merge and
the split (and further potential links) is tagged, all
walks that were stalled at the particular merge are
restarted.

4. For all other nodes that are encountered continue the walk
at the predecessor.

Special attention lies on the reconstruction of loops. Final
paths are always structured, therefore, if the tagging algo-
rithm is able to deduce that every control flow element in the
body of a loop is structured, the entire loop can be compiled
to a structured while-true loop. Final paths guarantee that
loop ends and exits are mapped correctly to JavaScript.

There are different prominent approaches dealing with
control flow reconstruction. The decompiler for the C lan-
guage presented by Cifuentes in [5] is based on the con-
struction of derived sequences, which basically iteratively
collapses regions in the CFG until it is trivial, or can no
longer be simplified. The approach from [5] differs from
the presented graph tagging algorithm as graph tagging in-
place restructures the control flow graph, without the need
for collapsing of sub-graphs as already established links are
skipped during walks.

A prominent decompiler for Java building on the Soot [41]
bytecode optimizing framework is Dava [26] which decom-
piles Java bytecode based on the theory of staged encapsula-
tion (SET). The theory of staged encapsulation builds a tree
based on the CFG. The SET tree contains nodes represent-
ing Java high level language constructs. Edges requiring an
unstructured control flow transfer are resolved with labeled
blocks. SET based decompilation requires several phases

1 / / list of all nodes
L i s t nodes = i r . a l l N o d e s () ;
void t agGraph () {

foreach (Node n : nodes){
i f (n i s a Merge){

6 foreach (Node e : n . p r e d e c e s s o r s){
walkBack (e , n , n) ;

}
} e l s e i f (i s F i n a l N o d e (n)){

walkBack (n . p r e d e c e s s o r , nul l , n u l l) ;
11 }

}
}
void walkBack (Node c u r r , Node prev , Node s t a r t){

i f (c u r r i s a Merge){
16 i f (i sMergeOfLink (c u r r)) {

Node s p l i t = s p l i t O f L i n k A t M e r g e (c u r r) ;
/ / skip link - continue walk after the link
walkBack (s p l i t . p r e d e c e s s o r , s p l i t , s t a r t) ;

} e l s e {
21 / / stall the walk

save (c u r r /∗ key ∗ / , new Walk (c u r r , prev , s t a r t)) ;
}

} e l s e i f (c u r r i s a S p l i t){
i f (s p l i t M u s t B e T a g g e d (s p l i t)){

26 tagWalk (c u r r /∗ s p l i t ∗ / , prev , s t a r t /∗merge ∗ /) ;
}
i f (a l l T a g g e d (c u r r)){

/ / create new link
c r e a t e L i n k (c u r r) ;

31 / / respawn walks stalled at the new link’s merge
respawnSavedWalk (m e r g e O f L i n k A t S p l i t (c u r r)) ;

}
} e l s e {

/ / arbitrary CFG node
36 walkBack (c u r r . p r e d e c e s s o r , c u r r , s t a r t) ;

}
}

Listing 1. Control flow tagging algorithm.

whereas graph tagging only needs one for control flow re-
construction. Cases of unstructured control flow are handled
differently by Dava. Dava tries to generate labeled blocks
whereas Graal AOT JS requires phases prior to control flow
reconstruction to rewrite unstructured control flow to struc-
tured one directly in the IR. Graal AOT JS then generates
code containing unstructured control flow using the block
interpreter approach.

4. Graal IR to JavaScript Code Generation
This Section describes the runtime system used for the
execution of JavaScript code emulating Java semantics. It
presents the relevant concepts of Java and their representa-
tion in the generated JavaScript code. In the first part we list
all major features of Java and their realization in JavaScript.
In the second part we present certain optimizations applied
to the generated code that increase its performance.

4.1 Java to JavaScript
To overcome limitations in the language semantics of Java-
Script an elaborated runtime system is necessary. The gener-
ation of a type system in JavaScript reflecting Java concepts
requires semantically equivalent constructs for typing, dy-
namic binding and exception handling. In the following we

LoopBegin

If

[1]

Start

Condition

IR Node

Control-flow Edge

Data-flow Edge

If

Merge

[3]

[2]

LoopExit

LoopExit

return

truefalse

 true

Condition

false

Merge

MergeLoopExit

Switch

0

1

Key

Phi

0

1

Figure 5. Structured control flow: multiple loop exits are
merged.

present the relevant concepts of Java and their semantically
equivalent constructs in JavaScript.

Primitive Types

boolean, char, short, int Primitives are modeled with
the support of ASM.js [28] as native JavaScript integers.
JavaScript integers are 32 bit signed integers in two’s com-
plement representation. Runtime checks are necessary to
ensure the valid value ranges of Java types smaller than int,
e.g., for short. Operations on short might lead to values
outside the 16 bit range and must therefore be checked for
overflow and adjusted. Techniques to do so are presented
in [45] and implemented in our back end.

long Longs needs to be emulated since the standard num-
ber type in JavaScript is the IEEE 754 double precision float-
ing point type which has a maximum integral part in the
range of [−253 : 253]. We emulate longs with a JavaScript
object that has two properties representing the high and low
word of the long value, each of which is a signed 32 bit two’s
complement number.

float Java expressions of type float never exceed single
precision. However, JavaScript only provides double preci-
sion numbers. To ensure an expression of type float never
exceeds its precision every expression of type float must be
checked. The ECMAScript 6 (Harmony) standard defines a
function Math.fround [29] that rounds a double precision
floating point number to nearest single precision number. To
enable competitive performance AOT JS features a mode

that omits checks for single precision floating point ranges
and therefore might lead to floats that exceed single preci-
sion.

double Doubles are mapped to JavaScript primitive num-
bers.

Arrays JavaScript offers an intrinsic Array object that is
capable of representing a Java array. Graal AOT JS features
an optional compilation mode using TypedArrays [29] for
primitive arrays.

Inheritance The Java inheritance model is directly mapped
to JavaScript’s prototype-based inheritance model. We build
a JavaScript prototype chain reflecting the Java type tree
with a java.lang.Object prototype as the root prototype.

Interfaces A Java variable can have an interface as its
static type. JavaScript is an untyped language and does not
support the concept of static types. To support type checks
against interfaces we compile additional type bits to com-
piled java.lang.Class objects enabling those checks. Ad-
ditionally, default methods introduced in Java 8 [21] require
interface types to be compiled to JavaScript.

Exception Handling Java’s exception class hierarchy is
vital for the distinction between logical errors, runtime ex-
ceptions or even control flow dispatches. JavaScript makes
a less effective distinction. In JavaScript every object can be
thrown. The intrinsic Error object denotes runtime errors
but exception rules are less strict, e.g., division by zero does
not produce a runtime exception. Graal AOT JavaScript is
able to use the native JavaScript exception handling mech-
anism. Our IR contains special edges for exception han-
dlers [11]. Code for exception handlers is generated with
the try-catch statement. Code generation for the code
in the IR’s exception edge emits an if statement after the
try-catch block that is entered if the preceding statement
produced an exception.

Unchecked Array Access and Unchecked Receivers The
Java virtual machine specification [21] requires array ac-
cesses to be checked at runtime. For performance reasons
we omit code generation of these kinds of checks. JavaScript
does not produce an error if an array index is out of bounds,
because such an array access is just treated as a new prop-
erty access at the given index. If the checks are desired Graal
AOT JS features a safe array mode emitting code for safe ar-
ray access. Additionally Graal AOT JS features a mode omit-
ting null checks on receivers, which removes null checks on
every callsite.

Limitations In general, there are four concepts of Java that
cannot be handled with AOT compilation to JavaScript.

• Dynamic Class Loading: Graal AOT JavaScript cannot
support dynamic class loading as this would require run-
time compilation which would require the compilation

of Graal itself to JavaScript. Currently runtime compila-
tion is not supported but this might change in the future
in order to support the self-optimizing AST interpreter
framework Truffle [47], on-top of Graal.

• Reflection: Java has an elaborate reflection mechanism
enabling programmers to examine or modify the behav-
ior of applications at runtime. AOT support for the Java
reflection API is limited for the same reasons that dy-
namic class loading is not supported.

• Multithreading: Multithreaded applications introduce
two problems with the presented approach. Our cur-
rent static analysis is not capable of analyzing multi-
threaded applications appropriately. Another problem is
JavaScript’s inherent lack of a real concurrency model.
JavaScript has WebWorkers [29] which offer the capa-
bility to execute code in a different thread. However
this model does not feature shared memory. Data is ex-
changed via message passing and callbacks. Java and
JavaScript do not share a common semantic notion of
concurrency, thus this feature of Java is not supported by
Graal AOT JS.

• Synchronous APIs: JavaScript does not support syn-
chronous I/O whereas Java does. It is not possible to map
synchronous Java APIs to JavaScript with AOT compila-
tion. Such APIs like, e.g., the Java Socket API, must be
re-written to work asynchronously. Currently, this is not
supported by Graal AOT JS.

4.2 Optimizations
In this Section we present some major optimizations on
the generated JavaScript code for improving performance.
Some of the optimizations are particularly designed for the
V8 virtual machine, but have no performance penalty on
different JavaScript engines. We evaluated the optimizations
on the benchmarks presented in Section 5.

Local Variable Inlining As presented in Section 2 Graal’s
IR is in static-single-assignment form [10]. Every node pro-
ducing a value represents a new local variable in the under-
lying program. Performance and code size of the generated
code would be compromised if every node producing a value
were associated with a new local variable in JavaScript. Thus
we use an optimization for inlining static-single-assignment
nodes at their usages. Our static-single-assignment node in-
lining heuristic is based on the subsequent list of assump-
tions

• Nodes with less than 2 usages can be inlined.
• Null can always be inlined
• Constants of primitive types can always be inlined
• Nodes with side-effects are never inlined
• Nodes whose usage contains a conditional expression of

the form a ? b : c are not inlined.

• Array accesses are not inlined when safe array mode is
enabled as this requires additional bounds checks.

Using our static-single-assignment inlining heuristic be-
tween 20% and 30% of all IR data nodes can be inlined
at their usage(s).

Exception Wrapping This optimization mainly pays off in
JavaScript VMs that do not optimize exception handlers. The
optimizing compiler of Google’s V8, for example, bails out
on methods containing the try-catch keywords.

Graal AOT JS is aware of all points in the code where
Java exceptions might be thrown which enables us to model
exception handling completely without using ”native” Java-
Script exception handlers. Whenever an implicit exception
would be thrown such as de-referencing null or when vio-
lating an array bound we do not throw an exception with
the JavaScript keyword ”throw” but rather return a custom
exception and exit the function on the return path. Listing 2
illustrates the approach. Function caller1 calls function f1
in plain exception mode and caller2 calls f2 in wrapped
exception mode. It is crucial to point out that with exception
wrapping every callsite must allocate the call’s return value
to a local variable. The return value must be checked for a
pending exception even if the called function’s return type is
void. The advantage of this optimization is that (although the
return type is not fixed and may be megamorphic) the func-
tion is still compiled with V8’s optimizing compiler, which
makes a big difference in performance as presented in Sec-
tion 5.

5. Evaluation
We evaluated our AOT JS compiler, which has been imple-
mented on-top of the Graal just-in-time compiler, by run-
ning and analyzing a set of benchmarks of different sizes. All
benchmarks were executed on a desktop-class Intel i5 pro-
cessor (2010) with 2 cores, 4 virtual threads featuring 8GB
of RAM and a core speed of 2.4 GHz running Fedora 21(64
bit).

We ran each of the benchmarks presented below with dif-
ferent optimization configurations. As we wanted to com-
pare the results against the Java HotSpot VM and against
hand-written JavaScript versions of (some) of the bench-
marks, we not only measure the peek performance but also
the start-up performance. The HotSpot server compiler has a
slow start-up performance whereas Google’s JavaScript en-
gine V8, which compiles every method upon its first execu-
tion with a simple base-line compiler has a fast start-up per-
formance. On the other hand, the server compiler reaches a
better peak performance than V8. Each test run consisted of
three different configurations of the benchmark and ten itera-
tions for each configuration. We took the arithmetic mean of
all configurations and put them in direct comparison to the
HotSpot server compiler. For the benchmarks binarytrees,
deltablue, nbody, fasta and SPECjbb2005 we measured their

/ / native JS Exceptions
2 f u n c t i o n f1 () {

i f (a){
throw new j a v a l a n g N u l l P o i n t e r E x c e p t i o n () ;

}
}

7 f u n c t i o n c a l l e r 1 () {
t r y{

f1 () ;
}ca tch (e){

i f (e i n s t a n c e o f j a v a l a n g N u l l P o i n t e r E x c p e t i o n){
12 . . .

}
/ / else unwind

}
}

17 / / wrapped exception handlers
f u n c t i o n f2 () {

i f (a){
re turn new Except ionWrapperType (new

j a v a l a n g N u l l P o i n t e r E x c e p t i o n ()) ;
}

22 }
f u n c t i o n c a l l e r 2 () {

var r e t = f1 () ;
i f (i s E x c e p t i o n (r e t)){

var exc= r e t . e x c e p t i o n ;
27 i f (exc i n s t a n c e o f j a v a l a n g N u l l P o i n t e r E x c e p t i o n)

{
. . .

}
/ / else unwind

}
32 }

Listing 2. Exception wrapping optimization example
(JavaScript).

execution time in milliseconds whereas for Linpack, Sci-
Mark2a and JBox2D we measured their score result.

We now give a short description of the used benchmarks.
Their performance is shown in Figure 6.

binarytrees is part of the Computer-Language-Benchmark-
Game (CLBG); it is a small benchmark performing many
binary tree allocations and recursive calls up to a certain
depth [6].

deltablue is a prominent one-way constraint solver, origi-
nally developed for the Smalltalk language by Maloney and
Wolczko. [9].

nbody is a simple numeric benchmark performing an
nbody simulation [6].

fasta (V#4) is also part of the CLBG generating and writ-
ing random DNA sequences.

linpack is a benchmark solving a set of linear equations,
heavily relying on floating-point performance [22].

SciMark2a is a benchmark performing scientific compu-
tations including a fast Fourier transformation, a Jacobi suc-
cessive over-relaxation, a Monte Carlo simulation, a sparse
matrix multiplication and an LU matrix factorization [36].

JBox2D is a Java port of the prominent physics engine
Box2d[4]. The Java port is released with its own benchmark
called ”Piston” [19] which sets up and performs a physical
simulation over several iterations in various configurations.

bin
ary

tre
es

de
lta

blu
e

nb
od

y
fas

ta

lin
pa

ck

SciM
ark

2

jbo
x2

dP
ist

on

SPECjbb
20

05
0

10

20

30

1 1 1 1 1 1 1 1

4
.0

8

1
0
.2

4

2
.4

3

7
.6

5

5
.8

6 1
0
.3

6

1
1
.3

9

1
9
.2

9

5
.2

1
4
.6

7

2
.3

9

7
.4

3

5
.5

1
0
.1

6

2
3
.4

9

2
0
.5

7

5
.9

1

1
5
.8

1

2
.8

3

1
0
.1

8

7
.7

5

1
5
.3

4

1
5
.5

5

2
6
.3

1

1
2
.0

9 1
6
.9

3

2
.4

5

1
0
.6

9

4
.9

9

1
1
.0

6 1
6
.8

7

2
4
.6

2

3
.0

1

1
.1

1

1
.2

5 5
.1

9

Java Server AOTJS All Opt AOTJS No Inline AOTJS No CF AOTJS No Excp Wrap Native JS

Figure 6. Relative performance of Graal AOT JS in different configurations compared to the Java HotSpot Server Compiler
and native JavaScript(lower is better, missing number indicates the absence of a native benchmark for JS).

SPECjbb2005 A single-threaded sequential version of the
original SPECjbb2005 Java server benchmark [37] emulat-
ing a three tier client-server application. The modifications
include a removal of the file logging and execution of all
threads on the main thread. For AOT JS usage warehouses
are loaded sequentially and a warehouse thread runs on the
main thread. Iterations are limited to 5000 per warehouse.
The execution was measured on four to eight warehouses
with an increment of one.

5.1 Control Flow Analysis Optimization
Our control flow tagging optimization presented in Sec-
tion 3.2 works on arbitrary Java bytecodes and yields a high
amount of restructured control flow. The evaluation of the
algorithm on the presented benchmarks can be seen in Ta-
ble 1.

Table 1. Percentage of reconstructed control flow relative to
the number of splits in an entire benchmark compilation.

Nr. of Methods
Nr. of with
Restructured Unstructured

Benchmark Nr. of Splits Splits Splits
binarytrees 131 120 (92%) 3 (8%)
delta blue 1177 918 (78%) 54 (20%)
nbody 8229 5910 (72%) 425 (28%)
fasta 1415 1008 (71%) 74 (24%)
linpack 976 714 (73%) 56 (25%)
Sci Mark 2a 1010 750 (74%) 61 (26%)
JBox2D 9576 6810 (71%) 499 (28%)
specjbb2005 12341 8871 (72%) 618 (28%)
Arithmetic
Mean 75% 23%

More than 75% of the control flow splits could be restruc-
tured leaving less than 25% of the methods with unstruc-
tured control flow. The numbers leave space for further op-
timizations. Especially nested loops with shared exception

handlers may currently lead to improperly restructured con-
trol flow.

The performance impact of our control flow reconstruc-
tion optimization can be seen Figure 6 and ranges from 2x
to 5x on average.

5.2 Code Size

Table 2. Total code sizes of the benchmarks.
Java Benchmark Java LOC (approx.) JS Code Size
binarytrees 58 305 KB
delta blue 607 1.6 MB
nbody 130 10.6 MB
fasta 125 1.7 MB
linpack 284 1.3 MB
Sci Mark 2a 1890 4.3 MB
JBox2D 13 478 12.9 MB
SPECjbb2005 12 800 14.2 MB

Table 2 shows the sizes of the source code and the tar-
get code of the benchmarks when compiled with the Graal
AOT JS compiler. The sizes range from a few lines (CLBG)
to several thousand lines of code. Even small programs may
result in an enormous amount of compiled code due to heavy
usage of the JDK. For example, the nbody benchmark re-
quires big parts of the JDK to be compiled, which results in
a code size comparable to the one of SPECjbb2005. The gen-
eral overhead in code size is high. Reasons for that are the
required features that are compiled this includes each reach-
able type, a virtual method table for each type, a field offset
table for unsafe memory access mapping to JavaScript and
unstructured control flow. 20% to 50% of the code size can
be attributed to the initial heap initialization. If more com-
pact code is desired tools like [15] or [23] can be used, which
achieve high compression rates and would decrease the code
size by 30 − 60%. For the presentation of benchmarks we
decided to evaluate the performance with unmodified code
produced by AOT JS.

The benchmarks were compiled with the optimizations
discussed in Sections 2, 3 and 4.

5.3 Runtime Performance
The performance measurements relative to the HotSpot
server compiler1 are presented in Figure 6. The server com-
piler offers the highest peak performance of all Java vir-
tual machines currently on the market. For the execution of
the JavaScript benchmarks that were generated from Java
as well as for the original JavaScript benchmarks we used
Google’s Chrome Browser2 as the target platform. Inter-
nally Chrome uses Google’s V8 [14] engine for executing
JavaScript. For details about V8 we refer to [14] and for
Crankshaft, V8’s optimizing compiler to [13] .

There are no JavaScript implementations of linpack, Sci-
Mark2a, JBox2D and SPECjbb2005, because these are Java
benchmarks and would have been too tedious to rewrite them
in JavaScript by hand.

As we can see in Figure 6, JavaScript generated by AOT
JS is slower than Java on the server compiler and slower
than JavaScript on V8. The benchmarks binarytrees, nbody
and fasta are 1.3x to 1.4x slower under AOT JS than on V8
which is reasonable if one considers the overhead introduced
by the Java semantics. Also linpack performs quite well,
although a native JavaScript baseline is missing.

Figure 6 also presents different configurations for opti-
mizations such as inlining, control flow analysis and ex-
ception wrapping. The optimizations have different impacts
on the benchmarks. Small benchmarks such as binarytrees
profit from the inlining of constructors which enables es-
cape analysis and increases the performance. Nbody and lin-
pack are examples for benchmarks that do not rely on elab-
orate Java features. Applying certain optimizations on them,
besides control flow analysis, does not result in significant
speedups. Nbody has basically zero call- and type-overhead.
Linpack, even without exception wrapping, which does not
compile methods with exception handlers with V8’s opti-
mizing compiler, as they do not optimize exception handlers,
is simple enough for V8’s baseline compiler to be optimized
properly. Binarytrees has a high call overhead with call stack
depths of 15 and more. Compiling it with the optimizing
compiler makes a huge difference compared to the full com-
piler. The ”number crunching” benchmarks generally profit
less from the optimizations as they rely less on an elaborate
type system and exception handling.

The interesting benchmarks of Figure 6 are deltablue,
JBox2D, SciMark2a and SPECjbb2005. The high slow-
down of deltablue is mainly due to the control flow anal-
ysis. Deltablue has a set of hot loops with control flow that
cannot be fully reduced by the control flow reconstruction
optimization. Slowdown due to unstructured control flow

1 JDK1.8.0 11 (64 bit)
2 Chrome 42.0.2311.135 (64-bit)

ranges from 1.36x to 1.54x to the AOT JS baseline which
has all optimizations enabled.

The SPECjbb2005 benchmark has several performance
problems. The main reasons for its slow performance are
its large number of memory allocations and the emulation
of long arithmetic. About 15% of the benchmark’s time
is spent in long arithmetic, mostly in addition, multiplica-
tion and division. For every computation using long values,
immutable long objects are created. About 7 − 10% of the
benchmarks’s time is spent in the GC. Considering the al-
locations of long objects, it seems that V8’s escape analy-
sis is not able to remove all of them, although inlining of
the arithmetic functions should never allocate more than one
object, namely the result of the computation. In addition to
that, SPECjbb2005 also suffers from performance problems
introduced by unstructured control flow.

The SciMark2a and JBox2D benchmarks illustrate fur-
ther examples of performance penalties for unstructured
control flow. The benchmarks spend a lot of time in hot
loops which were not fully analyzed by the control flow tag-
ging optimization. A large set of those loops is not identified
as structured control flow and thus compiled with the generic
block interpreter. This certainly leaves space for optimiza-
tions.

JBox2D is the benchmark that profits most from partial
escape analysis. Inlining of small functions and constructors
removes many object allocations which results in a perfor-
mance increase of 12x.

Performance slowdown to code compiled with the server
compiler ranges from 2.44x to 20x, which is a significant
slowdown. However, for many cases this speed is certainly
enough, especially for code that runs in websites. The slow-
down compared to handwritten JavaScript ranges from 1.3x
to 9x, but for small benchmarks is around 2−3x. This illus-
trates the usability of our approach. 2x is still a significant
slowdown but for most client applications this speed is suf-
ficient.

6. Related Work
Cross-Compilation to JavaScript is a well-known target in
the compiler research community. For a list of languages that
have cross compilers for JavaScript see [18]. Nearly every
prominent language has a representative in there.

Below we give short overview over the most interesting
approaches in relation to Graal AOT JS.

Emscripten [50] is Mozilla’s back end for the Low-Level-
Virtual-Machine (LLVM) [25] that generates JavaScript
code from LLVM assembly. The uniqueness of this approach
is the usage of ASM.js [28]. ASM.js is a low-level subset
of JavaScript that can be easily optimized as it allows the
executing JavaScript VM to specialize on 32 bit integers
for expressions. Emscripten is mainly targeting the LLVM
C/C++ front end Clang [24]. Their approach tries to pro-
duce fast and small JavaScript code. For the compilation of

Table 3. Compile to JS Comparison: N/A indicates that a certain approach is not design to be evaluated to a given property, or
literature does not provide detailed information.

JDK Threading Reflection GC Control Flow AOT Compilation Dependency
Support Reconstruction Optimization Source Analysis

Graal AOT JS Compilation No limited JS VM Yes Yes Java Bytecode Yes
Emscripten XMLVM Compilation No Full manually Yes Yes Java Bytecode No

GWT Custom No limited JS VM N/A N/A Java SourceCode N/A
teavm Custom Yes limited JS VM Yes N/A Java Bytecode Yes

Bck2Brwsr Custom No Full JS VM No No Java Bytecode N/A
Doppio JVM Interpretation Yes Full JS VM N/A No Java Bytecode No

Shumway N/A N/A N/A JS VM Yes Yes ActionScript N/A
WhaleSong N/A Yes N/A JS VM Limited Limited Racket Source N/A
JS of ocaml N/A No N/A JS VM Yes Yes OCaml ByteCode N/A

Java code to JavaScript, emscripten offers a tool-chain de-
scribed in [34]. The approach pipelines a Java to C and a C
to JavaScript cross-compiler. The Java to C transformation
uses the XMLVM [34] and the C to JavaScript transforma-
tion emscripten.

Google Web Toolkit (GWT) is Google’s client-sided Java-
Script web development toolkit, which includes a Java to
JavaScript compiler. The main focus of GWT lies on per-
formance and readability of the generated JavaScript code.
GWT features its own implementations of java.util.*

classes, so its JDK usage is limited. The Closure com-
piler [15] that can be optionally used features aggressive
optimizations.

Bck2Brwsr [17] is a Java VM that compiles bytecodes to
JavaScript. The approach is based on parsing Java classes,
extracting meta information and generating JavaScript code.
Bck2Brwsr supports just-in-time compilation in the browser
via loading required classes from a web server, which en-
ables support of the Java reflection API.

teavm is a Java bytecodes to JavaScript compiler [40]. The
compilation pipeline includes bytecode parsing, IR genera-
tion in static-single-assignment form, followed by a depen-
dency analysis over the imports to reduce the code size. It
applies AOT optimizations, control flow reconstruction and
a control flow optimization step. The approach’s dependency
checker is used to analyze imports of Java classes and to re-
move unused imports. Teavm’s documentation lacks precise
information about AOT optimizations. It just says that ”all
major optimizations should be applied”. Teavm does not of-
fer native support for the JDK, but features a custom com-
patibility API for it.

Doppio [42] is a JavaScript-based runtime system for gen-
eral purpose language support. The system features a large
set of low-level API and runtime functionality emulations.
The original paper presents a case study of a Java bytecode
interpreter running on-top of Doppio. However the approach
aims for general-purpose language support rather than gen-
eration of efficient JavaScript code.

Mozilla Shumway [30] is Mozilla’s web-native imple-
mentation of the small web format (SWF) [1]. Shumway

uses HTML5 and JavaScript for interpretation of SWF ap-
plications. It features an ActionScript [2] interpreter as well
as a just-in-time compiler generating JavaScript code.

Whalesong [49] is a Racket [35] to JavaScript compiler.
The approach features different compilation strategies, the
fastest being a Racket to bytecode to JavaScript compiler.
Slowdown to native Racket ranges from 25x to more than
100x. Problems arise from the mapping of Racket’s ad-
vanced language constructs to JavaScript like, e.g., preemp-
tion and advanced control. The paper presents limited con-
trol flow reconstruction optimizations during compilation
but it lacks detailed description.

JS of ocaml [43] is an OCaml [31] bytecode to JavaScript
compiler. The presented compiler builds a SSA based IR
from OCaml bytecode, applies several optimizations and
control flow reconstruction. Peak performance of the gen-
erated JavaScript code is very high. Compared to native
JavaScript the compiled OCaml code is very fast and nearly
as good as handwritten JavaScript.

Comparison to Graal AOT JS In Table 3 the presented
approaches are evaluated according to their capabilities and
features for transformations to JavaScript.

Emscripten is targeting a different source language than
Graal AOT JS. It uses the Clang front end for LLVM and
thus compiles unmanaged C & C++ code, which is not
comparable to a managed language like Java. Their XMLVM
extension fully supports the JDK and also features a way
of reducing the code size via so-called red lists. However,
this approach still suffers from larger code sizes as it lacks a
static analysis. The approach does not use native JavaScript
objects and compiles its own GC. Execution of allocation-
intensive Java benchmarks such as SPECjbb2005 may lead
to performance issues if the garbage collection is performed
in JavaScript rather than, by a highly tuned JavaScript VM.

Google’s web toolkit operates on the Java source-code
level and features a compiler-intrinsic compatibility set of
the JDK, which limits the usage prospects of the system. The
approach results in better performance because it does not
need control flow reconstruction on the source-code level.
Future work on Graal AOT JS will tackle this issue and
improve the control flow reconstruction optimization.

Teavm and Bck2Brwsr feature custom solutions for the
JDK and do not natively compile it to JavaScript. While
teavm’s approach also compiles an application to one piece
of executable JavaScript code, Bck2Brwsr supports just-in-
time compilation in the browser. However the loading of
classes and runtime-compilation require additional server
requests.

The Doppio JVM covers the execution of the entire JDK.
It supports threading, the entire file system API and full re-
flection. However, its Java bytecode interpreter suffers from
bad performance. Their presented benchmarks are compared
to the HotSpot interpreter, which is significantly slower than
the server compiler.

7. Conclusions
We presented a novel approach for AOT compilation of Java
to JavaScript. The approach is able to produce structured
JavaScript code from possibly unstructured Java bytecode.
We presented an algorithm for structured control flow re-
construction yielding a reasonable amount of restructured
control flow. We also presented a mapping of all Java con-
cepts to corresponding JavaScript concepts. The evaluation
of our approach on a set of benchmarks shows that AOT
compilation from a just-in-time compiler’s IR to JavaScript
is feasible, but there is some slowdown to hand-written code
depending on the benchmark. Benchmarks which rely more
on numeric computations than on a complex class hierarchy
show that the slowdown to native JavaScript mainly consists
of the additional operations carried out in Java such as type
checks, numeric range checks and the emulation of long val-
ues.

Future work will include improvements of the control
flow restructuring optimization especially for shared excep-
tion handlers and compound conditions. In addition to im-
proving the code generator, the support of the Truffle frame-
work [47] running on-top of Graal is a desired research goal.
First steps in this direction have already been made. Fea-
sibility prototypes of Graal’s Simple Language, which is a
simple untyped language for illustration of Truffle language
development, Truffle Interpreter and the Truffle JavaScript
interpreter are running on Graal AOT JS, but without run-
time compilation. Beside the general support for Truffle in-
terpreters, Graal AOT JS’s capabilities for the support of run-
time compilation for Truffle as presented in [48] will be ex-
plored. Such a system will require Graal itself to be com-
piled to JavaScript which is a challenge in terms of code size
rather than in terms of performance.

Acknowledgments
We thank all members of the Virtual Machine Research
Group at Oracle Labs and the Institute for System Software
at the Johannes Kepler University Linz for their support and
contributions. We especially thank Thomas Würthinger, An-
dreas Wöss, Matthias Grimmer, Roland Schatz, and Chris-

tian Wirth for their constant feedback. The authors from Jo-
hannes Kepler University are funded in part by a research
grant from Oracle.

References
[1] Adobe. Small Web Format, 2015. URL http://www.adobe.

com/devnet/swf.html.

[2] Adobe. ActionScript, 2015. URL http://www.adobe.com/
devnet/actionscript/documentation.html.

[3] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computing. ACM Comput-
ing Surveys (CSUR), 26(4):345–420, 1994.

[4] Box2d. Box2D Physics Engine, 2015. URL http://box2d.org/.

[5] C. Cifuentes. Reverse compilation techniques. PhD thesis,
Queensland University of Technology, 1994.

[6] CLBG. Computer Language Benchmark Game, 2015. URL
http://benchmarksgame.alioth.debian.org/.

[7] C. Click. Global code motion/global value numbering. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 246–257. ACM
Press, 1995. DOI: 10.1145/207110.207154.

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, 1991.
DOI: 10.1145/115372.115320.

[9] DB. DeltaBlue Benchmark, 2015. URL https://github.com/
xxgreg/deltablue.

[10] G. Duboscq, L. Stadler, T. Würthinger, D. Simon, C. Wim-
mer, and H. Mössenböck. Graal IR: An extensible declara-
tive intermediate representation. In Proceedings of the Asia-
Pacific Programming Languages and Compilers Workshop.
ACM Press, 2013.

[11] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Si-
mon, and H. Mössenböck. An intermediate representation
for speculative optimizations in a dynamic compiler. In Pro-
ceedings of the ACM Workshop on Virtual Machines and In-
termediate Languages, pages 1–10. ACM Press, 2013. DOI:
10.1145/2542142.2542143.

[12] A. Erosa and L. J. Hendren. Taming control flow: A struc-
tured approach to eliminating goto statements. In In Proceed-
ings of the International Conference on Computer Languages,
pages 229–240. IEEE Computer Society Press, 1994. DOI:
10.1109/ICCL.1994.288377.

[13] Google. Crankshaft: V8’s optimizing compiler, 2012. URL
http://blog.chromium.org/2010/12/new-crankshaft-for-v8.
html.

[14] Google. V8 JavaScript Engine, 2012. URL http://code.google.
com/p/v8/.

[15] Google. Closure Compiler, 2015. URL https://developers.
google.com/closure/compiler/.

[16] Google. Web Toolkit [GWT], 2015. URL http://www.
gwtproject.org/.

[17] Jaroslav Tulach. DukeScript: Bck2Brwsr VM, 2015. URL
http://wiki.apidesign.org/wiki/Bck2Brwsr.

http://www.adobe.com/devnet/swf.html
http://www.adobe.com/devnet/swf.html
http://www.adobe.com/devnet/actionscript/documentation.html
http://www.adobe.com/devnet/actionscript/documentation.html
http://box2d.org/
http://benchmarksgame.alioth.debian.org/
http://dx.doi.org/10.1145/207110.207154
http://dx.doi.org/10.1145/115372.115320
https://github.com/xxgreg/deltablue
https://github.com/xxgreg/deltablue
http://dx.doi.org/10.1145/2542142.2542143
http://dx.doi.org/10.1145/2542142.2542143
http://dx.doi.org/10.1109/ICCL.1994.288377
http://dx.doi.org/10.1109/ICCL.1994.288377
http://blog.chromium.org/2010/12/new-crankshaft-for-v8.html
http://blog.chromium.org/2010/12/new-crankshaft-for-v8.html
http://code.google.com/p/v8/
http://code.google.com/p/v8/
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
http://www.gwtproject.org/
http://www.gwtproject.org/
http://wiki.apidesign.org/wiki/Bck2Brwsr

[18] jashkenas. List of Languages that compile to JavaScript,
2015. URL https://github.com/jashkenas/coffeescript/wiki/
List-of-languages-that-compile-to-JS.

[19] JBox2D. Piston Bechnmark, 2015. URL http://www.jbox2d.
org/.

[20] T. László and Á. Kiss. Obfuscating c++ programs via control
flow flattening. Annales Universitatis Scientarum Budapesti-
nensis de Rolando Eötvös Nominatae, Sectio Computatorica,
30:3–19, 2009.

[21] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java
Virtual Machine Specification, Java SE 8 Edition, 2015. URL
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf.

[22] Linpack. Linpack Benchmark, 2015. URL http://www.netlib.
org/benchmark/linpackjava/.

[23] Lisperator. UglifyJs2, 2015. URL http://lisperator.net/
uglifyjs/.

[24] LLVM. Clang, 2015. URL http://clang.llvm.org/.

[25] LLVM. Low-Level Virtual Machine, 2015. URL http://llvm.
org/.

[26] J. Miecznikowski and L. Hendren. Decompiling java using
staged encapsulation. In Reverse Engineering, 2001. Proceed-
ings. Eighth Working Conference on, pages 368–374. IEEE,
2001. DOI: 10.1109/WCRE.2001.957845.

[27] J. Miecznikowski and L. Hendren. Decompiling java byte-
code: Problems, traps and pitfalls. In Compiler Construc-
tion, volume 2304, pages 111–127. Springer Berlin Heidel-
berg, 2002. DOI: 10.1007/3-540-45937-5˙10.

[28] Mozilla. ASM.js, 2015. URL http://asmjs.org/.

[29] Mozilla. Developer Network (MDN): JavaScript, 2015. URL
https://developer.mozilla.org/de/docs/Web/JavaScript.

[30] Mozilla. Shumway, 2015. URL http://mozilla.github.io/
shumway/.

[31] OCaml. The OCaml Language, 2015. URL https://ocaml.org/.

[32] OpenJDK. Graal, 2015. URL http://openjdk.java.net/projects/
graal/.

[33] M. Paleczny, C. Vick, and C. Click. The Java HotSpotTM

Server compiler. In Proceedings of the Symposium on Java
Virtual Machine Research and Technology, pages 1–12, 2001.

[34] A. Puder, V. Woeltjen, and A. Zakai. Cross-compiling Java
to JavaScript via tool-chaining. In Proceedings of the Inter-
national Conference on the Principles and Practice of Pro-
gramming in Java, pages 25–34. ACM Press, 2013. DOI:
10.1145/2500828.2500831.

[35] Racket. The Racket Language, 2015. URL http://racket-lang.
org/.

[36] SCI2. SciMark 2 Benchmark, 2015. URL http://math.nist.
gov/scimark2/.

[37] Spec. SPECjbb2005 Java Server Benchmark, 2015. URL
https://www.spec.org/jbb2005/.

[38] L. Stadler, G. Duboscq, H. Mössenböck, T. Würthinger, and
D. Simon. An experimental study of the influence of dynamic
compiler optimizations on scala performance. In Proceedings
of the 4th Workshop on Scala, page 9. ACM, 2013. DOI:
10.1145/2489837.2489846.

[39] L. Stadler, T. Würthinger, and H. Mössenböck. Partial escape
analysis and scalar replacement for Java. In Proceedings of the
International Symposium on Code Generation and Optimiza-
tion, page 165. ACM, 2014. DOI: 10.1145/2544137.2544157.

[40] TEA. TEA VM, 2015. URL http://teavm.org/.

[41] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot-a java bytecode optimization frame-
work. In Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative research, page 13. IBM
Press, 1999.

[42] J. Vilk and E. D. Berger. Doppio: breaking the browser
language barrier. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 508–518. ACM, 2014. DOI:
10.1145/2594291.2594293.

[43] J. Vouillon and V. Balat. From bytecode to javascript: the
js of ocaml compiler. Software: Practice and Experience, 44
(8):951–972, 2014.

[44] C. Wang, J. Hill, J. Knight, and J. Davidson. Software tamper
resistance: Obstructing static analysis of programs. Technical
report, 2000.

[45] H. S. Warren. Hacker’s delight. Addison-Wesley, Upper
Saddle River, NJ, 2nd ed. edition, 2013. ISBN 0321842685.

[46] T. Würthinger, C. Wimmer, and H. Mössenböck. Array
bounds check elimination in the context of deoptimization.
Science of Computer Programming, 74(5-6), 2009. DOI:
10.1016/j.scico.2009.01.002.

[47] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon,
and C. Wimmer. Self-optimizing AST interpreters. In Pro-
ceedings of the Dynamic Languages Symposium, page 73.
ACM Press, 2012. DOI: 10.1145/2384577.2384587.

[48] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM
to rule them all. In Proceedings of the ACM international
symposium on New ideas, new paradigms, and reflections
on programming and software, pages 187–204, 2013. DOI:
10.1145/2509578.2509581.

[49] D. Yoo and S. Krishnamurthi. Whalesong: Running racket
in the browser. In Proceedings of the Dynamic Languages
Symposium, pages 97–108. ACM, 2013.

[50] A. Zakai. Emscripten: An LLVM-to-JavaScript compiler.
In Companion to the ACM SIGPLAN Conference on Ob-
ject Oriented Programming Systems, Languages, and Ap-
plications, pages 301–312. ACM Press, 2011. DOI:
10.1145/2048147.2048224.

https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
http://www.jbox2d.org/
http://www.jbox2d.org/
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
http://www.netlib.org/benchmark/linpackjava/
http://www.netlib.org/benchmark/linpackjava/
http://lisperator.net/uglifyjs/
http://lisperator.net/uglifyjs/
http://clang.llvm.org/
http://llvm.org/
http://llvm.org/
http://dx.doi.org/10.1109/WCRE.2001.957845
http://dx.doi.org/10.1007/3-540-45937-5_10
http://asmjs.org/
https://developer.mozilla.org/de/docs/Web/JavaScript
http://mozilla.github.io/shumway/
http://mozilla.github.io/shumway/
https://ocaml.org/
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/
http://dx.doi.org/10.1145/2500828.2500831
http://dx.doi.org/10.1145/2500828.2500831
http://racket-lang.org/
http://racket-lang.org/
http://math.nist.gov/scimark2/
http://math.nist.gov/scimark2/
https://www.spec.org/jbb2005/
http://dx.doi.org/10.1145/2489837.2489846
http://dx.doi.org/10.1145/2489837.2489846
http://dx.doi.org/10.1145/2544137.2544157
http://teavm.org/
http://dx.doi.org/10.1145/2594291.2594293
http://dx.doi.org/10.1145/2594291.2594293
http://dx.doi.org/10.1016/j.scico.2009.01.002
http://dx.doi.org/10.1016/j.scico.2009.01.002
http://dx.doi.org/10.1145/2384577.2384587
http://dx.doi.org/10.1145/2509578.2509581
http://dx.doi.org/10.1145/2509578.2509581
http://dx.doi.org/10.1145/2048147.2048224
http://dx.doi.org/10.1145/2048147.2048224

	Introduction
	System Structure
	Structured Control Flow Reconstruction
	Control Flow Graph Block Interpreter
	Structured Control Flow Reconstruction Algorithm

	Graal IR to JavaScript Code Generation
	Java to JavaScript
	Optimizations

	Evaluation
	Control Flow Analysis Optimization
	Code Size
	Runtime Performance

	Related Work
	Conclusions

