
Simulation-Based Code Duplication for Enhancing
Compiler Optimizations∗†

David Leopoldseder
Johannes Kepler University

Linz, Austria
david.leopoldseder@jku.at

Abstract
The scope of compiler optimizations is often limited by con-
trol flow, which prohibits optimizations across basic block
boundaries. Code duplication can solve this problem by ex-
tending basic block sizes, thus enabling subsequent opti-
mizations. However, duplicating code for every optimization
opportunity may lead to excessive code growth. Therefore,
a holistic approach is required that is capable of finding
optimization opportunities and classifying their impact.

This paper presents a novel approach to determine which
code should be duplicated in order to improve peak per-
formance. The approach analyzes duplication candidates
for subsequent optimizations opportunities. It does so by
simulating a duplication and analyzing its impact on other
optimizations. This allows a compiler to weight up multiple
success metrics in order to choose those duplications with
the maximum optimization potential. We further show how
to map code duplication opportunities to an optimization
cost model that allows us to maximize performance while
minimizing code size increase.

CCS Concepts • Software and its engineering → Just-
in-time compilers;Dynamic compilers;Virtualmachines;

Keywords Code Duplication, Tail Duplication, Compiler
Optimizations

ACM Reference Format:
David Leopoldseder. 2017. Simulation-Based Code Duplication for
Enhancing Compiler Optimizations. In Proceedings of 2017 ACM SIG-
PLAN International Conference on Systems, Programming, Languages,
and Applications: Software for Humanity (SPLASH Companion’17).
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3135932.
3135935

∗This research participates in both SPLASH SRC and Doctoral Symposium tracks.
†This research project is partially funded by Oracle Labs.

SPLASH Companion’17, October 22–27, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of 2017 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity (SPLASH
Companion’17), https://doi.org/10.1145/3135932.3135935.

1 Motivation
Code duplication, often referred to as tail duplication [4] or
replication [9, 10], is a compiler optimization that removes
code after control merges and copies it into predecessor
blocks. This enables a compiler to specialize the duplicated
code to the types and values used in predecessor branches.
Code specialization can enable other optimizations. There-
fore, a sophisticated duplication strategy is necessary in
order to select those duplications that lead to a maximum
benefit.

2 Problem
Discovering optimization opportunities after code duplica-
tion is a non-trivial task. It requires global knowledge about
the data-flow and the control-flow of a program that can
only be obtained by complex analysis. There are different
approaches to find such opportunities. However, there is
no unified approach that finds all kinds of optimizations
that can be enabled by code duplication. Even with global
knowledge about what kinds of optimization opportunities
exist, duplicating the code to enable all of them may lead to
excessive code growth [5]. This often has a negative impact
on compile time as it increases the workload for subsequent
optimizations. Without holistic knowledge about the impact
of a duplication a compiler may perform unnecessary (in
terms of optimization potential) or even harmful (in terms
of code size) transformations.
Many approaches use code duplication to perform opti-

mizations. The subsequent list summarizes themost common
ones.
Duplication approaches for very long instruction word

processors [4] aim to enlarge basic blocks via tail duplication
in order to enable the compiler to perform better instruction
selection and scheduling.

Bodík et al. [2] use duplication to perform complete partial
redundancy elimination [8].
Mueller and Whalley [9, 10] use code duplication to op-

timize away conditional and unconditional branches. In [9]
they mention the enabling effect of code replication on sub-
sequent optimization passes.

https://doi.org/10.1145/3135932.3135935
https://doi.org/10.1145/3135932.3135935
https://doi.org/10.1145/3135932.3135935

SPLASH Companion’17, October 22–27, 2017, Vancouver, Canada David Leopoldseder

We improve upon the work of the presented approaches
by evaluating the impact of a duplication on subsequent op-
timizations before performing it. This allows us to determine
if a duplication is indeed beneficial for performance.

3 Approach
This paper presents a novel approach to find optimization op-
portunities after code duplication. The approach is based on a
duplication simulation that finds beneficial (in terms of peak
performance) duplication candidates. We implemented the
approach in a three-tier algorithm that finds and performs
beneficial duplication optimizations. It does so by analyzing
a compilation unit and determining all possible optimiza-
tions after code duplication. The approach is applicable for
static and dynamic compilers. It works with common inter-
mediate representations (IR) that use the notion of a control
flow graph (CFG). For simplicity, we assume that the IR is in
static-single-assignment form [6].
We propose a sequential three-tier algorithm to perform

code duplication. The tiers are named simulation, trade-off
and optimization. The simulation tier finds optimization op-
portunities after simulated code duplication. The trade-off
tier fits the opportunities into an optimization cost model
and the optimization tier performs beneficial duplications.
The remainder of this paper describes each of them.

Simulation We illustrate the simulation tier with the sam-
ple program f in Figures 1 and 2, which uses a simple CFG-
based IR in SSA form. To find subsequent optimization op-
portunities we simulate the impact of a duplication by per-
forming a depth-first traversal on the dominator tree of the
program. Figure 2a shows the dominator tree of f . Every
time we process a block like bp1 or bp2, which has a merge
successor bm in the CFG, we simulate a duplication by copy-
ing bm and appending it to bp . Figure 2b shows those two
copies: bm1 and bm2 . In the original program, bm is not dom-
inated by bp1 nor bp2. However, after duplication, bm1 and
bm2 are appended to bp1 and bp2, and are therefore also dom-
inated by them (in fact, they can be viewed as extending bp1
and bp2). After processing bpi we continue simulation in bmi ,
which is indicated by the red arrows in Figure 2b. The algo-
rithm performs the simulation traversal for all combinations
bp and bm of a program.

p3= φ(p1, p2)
return p3 * x

bm

p2= 2
bp2

a > b bs

p1= a
bp1

Figure 1. Sample Program with CFG.

In order to find optimization opportunities during the tra-
versal of the copies of bm , it is necessary for each optimiza-
tion to determine if it can be applied after duplication. We
use the notion of precondition and action, presented by Chang
et al. [4], and split up our optimization phases into two parts.
The precondition is a predicate which holds if a given IR
pattern can be optimized. The action step performs the ac-
tual optimization. We build applicability checks (AC) for all
common optimizations. These determine if an optimization
can be applied to a given instruction. Before descending into
bm1 or bm2 , we replace all φ-functions in them with their
inputs on the respective branch. This way ACs behave as if
the original program did not contain any merges.
An example of an AC can be seen in Figure 2c, which

shows the algorithm during the processing of bm2 . The φ-
function p3 was replaced by the constant 2. Our algorithm
tries various optimizations. Copy propagation can replace
p3 by p2 and finally by the constant 2. In return 2 * x,
strength reduction can replace the multiplication with the
shift x << 1. The optimization potential detected by the ACs
is saved and the action steps are performed.
We iterate all instructions of the copies of bm and apply

the ACs on each of them. If an AC triggers, we save the
optimization potential and perform the associated action
step. The action step can change the instructions in bm1 and
bm2 . Note that all of this happens on the copies ofbm , and not
the original merge block bm . Thus we simulate the impact
of a duplication.

The algorithm saves the optimization potential and applies
the action step on the instructions of bm2 , i.e., it replaces
2 * x with x << 1. Figure 2d shows the program f after
duplicatingbm into its predecessors. Simulating a duplication
by traversing a copy ofbm yields the same results as doing the
actual code duplication. It allows us to save all optimizations
that are possible after duplication without the need to modify
the original program.

Simulation incurs significantly less overhead compared to
backtracking-based approaches since it does not require to
maintain consistent data dependencies for the program.

Trade-off We only want to duplicate those sections of code
that increase peak performance. Thus, to avoid code explo-
sion, we propose to trade-off between different duplication
opportunities based on their impact, both in terms of peak
performance and code size. We modify the AC functions
such that they not only return whether an optimization is
possible, but to also return a performance estimation for the
improvement of the optimization. We call those improve-
ment estimates benefit. We propose to quantify duplication
opportunities by summing up the improvement estimates
of the collected optimization opportunities. This allows the
compiler to trade-off between all collected duplication op-
portunities.

Simulation-Based Code Duplication SPLASH Companion’17, October 22–27, 2017, Vancouver, Canada

bp1

bs

bmbp2

(a) Dominator Tree.

bp1

bs

bm2

bp2

bm1

(b) Dominator Tree Depth-first
Traversal.

a > b bs

p2= 2 bp2

bm2

p3= φ(p2)
return p3 2* x

(c) Dominator Tree φ-
replacement and optimization.

return a * x

a > b

return x << 1

bs

bp1 bp2

(d) After Duplication.

Figure 2. Duplication Simulation Sample Program

The code size impact, positive or negative, of a duplication
opportunity represents its cost. Together with the benefit
we formulate a global trade-off function that decides if a
duplication opportunity is worth to be performed as an opti-
mization task. We derive a function f (benefit, cost) that
decides whether a duplication should be performed while
continuously trying to maximize the sum of all benefits and
to minimize the sum of all costs. We propose using profiling
information to first optimize those parts of the program that
benefit a lot from duplication.

Optimization In the last step of our algorithm we dupli-
cate and optimize those instructions of the merge block for
which the simulation tier indicated a sufficient optimization
benefit. In other words, we make those simulated optimiza-
tions permanent.

4 Evaluation Methodology
To evaluate the presented duplication optimization, we are
following an iterative approach. Our first step is to test the
hypothesis that enabling optimizations via duplication in-
deed increases peak performance. We do so by implementing
our algorithm in the Graal compiler [7].

We are proposing an incremental experiment to measure
crucial success-metrics such as peak performance, code size
and compile-time. We use state of the art benchmarks like
Java DaCapo [1], Scala-DaCapo [11] and SPECjvm2008 [12].
To evaluate the performance impact on dynamic languages
we also use the JavaScript octane [3] benchmark executed on
GraalJS, a JavaScript implementation on-top of Truffle [13].
Truffle is a framework for dynamic language implementa-
tions provided by Graal.

In Section 3 we proposed the usage of a performance esti-
mator to determine the benefits of a duplication opportunity.
We plan to conduct experiments validating the correlation
between the performance estimations and the real perfor-
mance of an application. This is necessary to ensure that our
cost model is valid.
Finally, we are planning to evaluate the impact of our

trade-off function f (benefit, cost) on each success met-
ric. In a first approach we implemented it based on a linear
cost model, however, we are planning to evaluate other ap-
proaches as well.

5 Conclusion
This paper proposed a novel approach for code duplication
that allows a compiler to find beneficial optimization op-
portunities after code duplication. It combines simulation

and optimization into a global three-tier algorithm that en-
ables subsequent optimizations after code duplication. The
algorithm first simulates duplications to find optimization
opportunities. Then, it trades off between those opportu-
nities by using a performance estimator to quantify them
based on their optimization potential and code size effects.
In the final step, it performs beneficial duplications that max-
imize the peak performance while minimizing the code size
impact.

References
[1] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.

Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T.
VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The DaCapo
Benchmarks: Java Benchmarking. In OOPSLA.

[2] Rastislav Bodík, Rajiv Gupta, and Mary Lou Soffa. 1998. Complete
Removal of Redundant Expressions. In PLDI.

[3] Stefano Cazzulani. 2012. Octane: The JavaScript benchmark suite for
the modern web. Retrieved December 21 (2012), 2015.

[4] Pohua P. Chang, Scott A. Mahlke, and Wen-mei W. Hwu. 1991. Using
Profile Information to Assist Classic Code Optimizations. Softw. Pract.&
Exper. (1991).

[5] Keith D Cooper, Kathryn S Mckinley, and Linda Torczon. 1998.
Compiler-Based Code-Improvement Techniques. (1998).

[6] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. TOPLAS (1991).

[7] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon,
Christian Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An
Extensible Declarative Intermediate Representation. In APPLC.

[8] E. Morel and C. Renvoise. 1979. Global Optimization by Suppression
of Partial Redundancies. Commun. ACM (1979).

[9] Frank Mueller and David B. Whalley. 1992. Avoiding Unconditional
Jumps by Code Replication. In PLDI.

[10] Frank Mueller and David B. Whalley. 1995. Avoiding Conditional
Branches by Code Replication. In PLDI.

[11] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder.
2011. Da Capo con Scala: design and analysis of a scala benchmark
suite for the java virtual machine. In OOPSLA.

[12] Standard Performance Evaluation Corporation. 2008. SPECjvm2008.
(2008). http://www.spec.org/jvm2008/

[13] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to Rule Them All. In Onward.

http://www.spec.org/jvm2008/

	Abstract
	1 Motivation
	2 Problem
	3 Approach
	4 Evaluation Methodology
	5 Conclusion
	References

