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ABSTRACT
Java programs can contain non-counted loops, that is, loops for
which the iteration count can neither be determined at compile
time nor at run time. State-of-the-art compilers do not aggressively
optimize them, since unrolling non-counted loops often involves
duplicating also a loop’s exit condition, which thus only improves
run-time performance if subsequent compiler optimizations can
optimize the unrolled code.

This paper presents an unrolling approach for non-counted loops
that uses simulation at run time to determine whether unrolling
such loops enables subsequent compiler optimizations. Simulat-
ing loop unrolling allows the compiler to determine performance
and code size effects for each potential transformation prior to
performing it.

We implemented our approach on top of the GraalVM, a high-
performance virtual machine for Java, and evaluated it with a set
of Java and JavaScript benchmarks in terms of peak performance,
compilation time and code size increase.We show that our approach
can improve performance by up to 150% while generating a median
code size and compile-time increase of not more than 25%. Our
results indicate that fast-path unrolling of non-counted loops can
be used in practice to increase the performance of Java applications.
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1 INTRODUCTION
Generating fast machine code for loops depends on a selective appli-
cation of different loop optimizations on the main optimizable parts
of a loop: the loop’s exit condition(s), the back edges and the loop
body. All these parts must be optimized to generate optimal code
for a loop. Therefore, a multitude of loop optimizations were pro-
posed to reduce iteration counts, remove loop conditions [2], hoist
invariant computations outside loop bodies [8], vectorize instruc-
tions [17], revert iteration spaces and schedule loop code to utilize
pipelined architectures [1]. However, non-counted loops [10], that
is, loops for which we cannot statically reason about induction vari-
ables and iteration count, are less optimizable than counted loops
as their iteration count cannot be statically determined. Optimizing
such loops could potentially lead to large performance gains, given
that many programs contain non-counted loops.

As a generic way to optimize non-counted loops, we propose
to unroll them without attempting to remove their exit conditions.
However, this does not necessarily improve performance as the
number of loop exit condition checks is not reduced and existing
compiler optimizations often cannot optimize them away. There-
fore, an approach is required that determines other optimization op-
portunities enabled by unrolling a non-counted loop. Such optimiza-
tion opportunities have already been researched by Leopoldseder
et al. [29] for code duplication of control-flow merges, showing
significant increases in run-time performance if applied selectively.
Loop unrolling is in fact a sequential code duplication transforma-
tion; the body of a loop is duplicated in front of itself. We developed
an algorithm to duplicate the body of a non-counted loop, effectively
unrolling the loop and enabling subsequent compiler optimizations.
We developed a set of simulation-based unrolling strategies that
analyze a loop for compiler optimizations enabled by loop unrolling.
In summary, this paper contributes the following:
• We present an optimization, called fast-path loop creation, that
can be used to unroll general loops. Fast-path loop creation
is based on splitting loops with multiple back edges into hot-
path and slow-path loops, enabling code motion to optimize
may-aliasing memory accesses.
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# Counted # Non-Counted % Non-Counted
Benchmark Loops Loops Loops
lusearch 219 449 67%
jython 1779 3333 64%
h2 538 4473 89%
pmd 1456 3379 69%
avrora 169 593 77%
luindex 364 660 64%
fop 653 1289 66%
xalan 510 1022 66%
batik 723 1857 71%
sunflow 249 389 59%
Arithmetic Mean 69.8%

Table 1: Number of counted and non-counted loops in the
Java DaCapo Benchmark suite.

• We present an algorithm to partially unroll the hot path of
a non-counted loop based upon the proposed fast-path loop
creation.
• We present a set of simulation-based unrolling strategies to
selectively apply unrolling of non-counted loops to improve
peak performance.
• We implemented our approach in an SSA-based Java bytecode-
to-native code just-in-time (JIT) compiler and evaluated the
implementation in terms of performance, code size, and compile
time using a set of Java, Scala, and JavaScript benchmarks.

2 UNROLLING NON-COUNTED LOOPS
In this section, we explain why unrolling non-counted loops is more
challenging than unrolling counted loops. We present an initial idea
to tackle this issue based on simulation, on which we will expand
in the subsequent sections.

Non-counted loops are loops for which neither at compile time
nor at run time the number of loop iterations can be determined.
This can be due to one out of several reasons; the most common
ones are shown in Listing 1: the loop exit conditions are not nu-
merical (see Figure 1a), the loop body consists of side-effecting
instructions1 aliasing with the loop condition (see Figure 1b), or
loop induction variable analysis [48] cannot guarantee that a loop
contains induction variables leading to termination of the loop (see
Figure 1c).

We informally observed that a significant amount of Java code
contains non-counted loops. To further test this hypothesis, we
instrumented the Graal [36] just-in-time (JIT) compiler to count
the number of counted and non-counted loops 2 in the Java Da-
Capo benchmark suite. The results in Table 1 demonstrate that
non-counted loops are more frequent than counted loops, which
provides high incentives to compiler developers to optimize them.

1 while (mem[ x ] ! =NUL) {
2 mem[ y ] = . . .
3 }

Listing 2: Non-counted loop with side effects.

1 The term side-effect describes operations that can have an observable effect on the
execution system / environment. Such operations include function calls, memory
writes, sun.misc.unsafe [34] usage, native calls and object locking [23].
2We counted the loops after inlining, because the number of loop iterations in counted
loops is often only inferrable after this optimization.

Loop Unrolling [10–12, 14, 25, 41] non-counted loops [10] is only
possible in a general way if a loop’s exit conditions are unrolled
together with the body of a loop. Previous work proposed avoiding
to unroll non-counted loops together with their exit conditions like
the one proposed by Huang and Leng [25] who used the weakest
pre-condition calculus [13] to insert a loop body’s weakest pre-
condition into a given loop’s initial condition to maintain a loops
semantic after unrolling it. However, side-effects incur problems
for optimizing compilers when trying to unroll non-counted loops.
If the body of a loop contains side-effecting instructions, deriving
the weakest pre-condition requires modeling the state of the virtual
machine (VM), which we consider impractical for just-in-time com-
pilation. As the compiler cannot generally infer the exact number of
loop iterations for non-counted loops, it cannot speculatively unroll
them and generate code containing side-effects that are unknown.
This is a general problem, as side-effects and multi-threaded ap-
plications prevent compilers in managed execution systems like
the Java virtual machine (JVM) from statically reasoning about
the state of the memory, thus preventing the implementation of
generic loop unrolling approaches. Consider the code in Listing 2.
The loop’s condition is the value in memory at index x. However,
the body of the loop contains a memory write at index y. If alias
analysis [15, 31] fails to prove that x and y do not alias, there is no
way, without duplicating the exit conditions as well, to unroll the
loop without violating the read after write dependency of the read
in iteration n on the write in iteration n − 1. Figure 2 shows the
memory dependencies of the loop from Listing 2 in a graph illus-
trating memory reads and write over two loop iterations. Unrolling
the loop requires the compiler to respect the memory constraints of
the loop. That means that the condition cannot be re-ordered with
the loop’s body without violating the memory constraints of the
loop. Therefore, a compiler cannot derive a weakest pre-condition
with respect to the body of the loop as the post-condition of the
loop body is unknown and the effect of the body of the loop on the
state of the VM is unknown.

We propose to unroll non-counted loops with code duplica-
tion [29]. Duplicating the loop body together with its loop condition
enables unrolling of general loops. We can represent every loop as
a while(true) loop with the exit condition moved into the loop

1 while ( true ) {
2 if ( . . . ) {
3 body
4 } else {
5 break

6 }
7 }

Listing 3: General Loop Construct.

body (see Listing 3). A loop can then by unrolled by duplicating
the body of the loop and inserting it before the initial loop body.
Listing 4 shows the example from Listing 3 after unrolling one
iteration. When applied to the source example from Listing 2, the
unrolled source loop looks like Listing 5. In contrast to general loop
unrolling [2], we cannot remove the second exit path (lines 3, 5,
6) of the loop as it is non-counted. Unrolling loops via duplication
does not create traditional unrolling optimization opportunities, be-
cause loops are unrolled with their loop exit conditions. Therefore,

2



Fast-Path Loop Unrolling ManLang’18, September 12–14, 2018, Linz, Austria

1 while (mem [ . . . ] ! = NUL) {
2 . . .
3 }

(a) Non-Numerical Exit Condition.

1 while (mem[ x ] > a ) {
2 . . .
3 // x and y might alias

4 mem[ y ] = . . .
5 . . .
6 }

(b) Loop Body Aliasing with Condition.

1 while ( a > 0 ) {
2 if ( . . . ) {
3 a ++ ;
4 } else {
5 a−=b ;
6 }
7 }

(c) Incompatible Induction Variables.

Listing 1: Non-Counted Loops

1 while ( true ) {
2 if ( . . . ) {
3 body un r o l l e d
4 if ( . . . ) {
5 o r i g i n a l body
6 } else {
7 break

8 }
9 } else {
10 break

11 }
12 }

Listing 4: General Loop Construct unrolled.

there is no reduction in execution time due to a reduced num-
ber of loop exit condition checks. We propose to tackle this issue
with a simulation-based scheme enabling other optimizations via
unrolling, based on the work of Leopoldseder et al. [29]. Loop un-
rolling can enable subsequent compiler optimizations in the same
way as dominance-based duplication simulation [29]. This enables
optimizations such as constant folding, strength reduction [2], con-
ditional elimination [43], and so forth. To determine the effects of
unrolling a loop on the optimization potential of the compilation
unit, we simulate the unrolling prior to the actual transformation;
therefore we can precisely find all profitable unrolling candidates
and decide which ones are profitable enough to be unrolled.

Read mem[x]

Write mem[y]

Iteration 0Write-After-Read

Iteration 1

Read mem[x]

Write mem[y]

Write-After-Read

Read-After-Write

Figure 2: Side-effect Loop Memory Graph: The directed ar-
rows show memory dependencies between read and write
operations in two iterations of the loop.

3 FAST-PATH UNROLLING OF
NON-COUNTED LOOPS

In this section, we present Fast-Path Loop Unrolling, our approach
to simulation-based loop unrolling of non-counted loops. First, we

1 while (mem[ x ] ! =NUL) {
2 mem[ y ] = . . .
3 if (mem[ x ] ! =NUL) {
4 mem[ y ] = . . .
5 } else {
6 break ;
7 }
8 }

Listing 5: Side-effect-full Loop after Unrolling.

propose a novel algorithm to perform loop unrolling via duplica-
tion and peeling, called Fast-Path Loop Creation, which simulates
the effects of unrolling a loop and analyzes it for optimization
opportunities after unrolling. We do this prior to the actual code
transformation and unroll loops based on their optimization poten-
tial with respect to the optimizations implemented in the compiler.
We use a static performance estimator [30] to estimate the entire
run time of the fast-path of a loop and compare it with the ver-
sion computed during simulation. If the optimization potential is
sufficient, we perform the unrolling transformation (see Section 5).

3.1 Fast-Path Loop Creation
Before exploring the unrolling of non-counted loops, we started to
experiment with a novel transformation that we call fast-path loop
creation, an optimization for multi-back-edge loops. Multi-back-
edge loops are very common in many applications; for example,
they can be generated from conditional statements at the end of a
loop’s body or they can result from continue statements in loops.
Additionally, a compiler often creates them as a result of inlining
function calls into loops. We devised this optimization for loops
with multiple back edges because they often do not have an equally-
distributed probability for each control flow path leading to a back
edge. If profiling information [47] indicates that a set of back edges
is taken with a very high likelihood, the other back edges may
hinder the (optimal) optimization of the loop due to two main
reasons:
• A side-effect can influence the scheduling of anti-dependencies
in the loop [20].
• A back-edge value flowing into a loop φ [9] can make a loop
non-counted.

Consider the code in Listing 6. The loop invariant read [8] in line 4
cannot be hoisted outside of the loop as the memory location may
be aliasing with the write in line 7. If alias analysis [15, 31] cannot
prove that the loop variable i is different than k for all possible
values of i and k , then the compiler has to assume that there could
be a write-after-read dependency from the read to the write in
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one iteration. This results in a read-after-write dependency from
iteration n to iteration n + 1. Considering that, for example, the
false branch in the loop has a low probability in comparison to the
true branch, the read has to be performed every iteration although
the write is rarely taken. However, one possibility to still hoist the
read out of the loop is to use fast-path loop creation.

The general transformation idea of fast-path loop creation is
to create an outer, slow-path loop for all back edges of the loop
that have a low probability. The inner, fast-path loop then only
consists of frequently taken back edges. The outer loop created is
a while(true) loop that is exited under the same conditions as
the inner loop. Listing 7 shows the problematically-aliasing loop
from Listing 6 after fast-path loop creation in pseudo code. Once
we created the outer loop, we can hoist the read from the inner loop
to the outer loop. We promoted the write-after-read dependency
from the inner, fast-path, loop to the outer, slow-path, loop. The
slow-path loop is only taken if the else branch in the inner loop
is taken, therefore its probability is equal to the one of the else
branch.

1 double r e s u l t = 0 ;
2 for ( int i = 0 ; i < a r r . l e ng th ; i ++) {
3 if ( /*...*/ ) {
4 r e s u l t += a r r [ k ] ;
5 } else {
6 // write that can alias

7 a r r [ i ] = r e s u l t ;
8 }
9 }

Listing 6: Multi-back-edge Loop.

1 double r e s u l t = 0 ;
2 int i = 0 ;
3 ou t e r : while ( true ) { /*1*/

4 // initial read

5 tmp = a r r [ k ] ;
6 i n n e r : for ( ; i < a r r . l e ng th ; i ++) { /*2*/

7 if ( /*...*/ ) { /*3*/

8 r e s u l t += tmp ;
9 continue i n n e r ;
10 /*3*/ } else { /*4*/

11 // write that can alias

12 a r r [ i ] = r e s u l t ;
13 // may aliasing write happened

14 // continue outer , perform read again

15 continue ou t e r ;
16 /*4*/ }
17 /*2*/ }
18 break ou t e r ;
19 /*1*/ }

Listing 7: Multi-back-edge Loop After Fast-Path Loop
Creation.

Algorithm. Below, we present the algorithm for fast-path loop
creation. To be consistent with the implementation section, we use
a pseudo-graph-based intermediate representation (IR) based on
our implementation platform’s IR [16]. Graal IR is in static-single-
assignment [9] (SSA) form. It is a superposition of two graphs, the
data- and the control flow graph. Loop back edges and loop exits
are modeled explicitly as instructions in the IR. The pseudo code
for the algorithm can be seen in Algorithm 1. We create the outer

loop header and re-route all loop ends of the inner loop that are
considered to be part of the slow-path to the outer loop.

Data: Loop loop
Result: Loop slowPathLoop
LoopHeader fastPathLoopHeader← loop.loopHeader();
/* Create new loop header for the outer loop and place it before

the fast-path loop */

LoopHeader slowPathLoopHeader← new LoopHeader();
fastPathLoopHeader.insertInstructionBefore (slowPathLoopHeader);
/* Create phis for the outer loop based on the types of the inner

loop. */

for PhiNode innerPhi in fastPathLoopHeader.phis () do
PhiNode emptyPhi← new PhiNode(innerPhi.type());
slowPathLoopHeader.addPhi (emptyPhi);

end
/* All loop exit paths of inner loop will also exit outer loop */

for LoopExitNode exit in fastPathLoopHeader.exits () do
LoopExitNode outerExit← new LoopExitNode();
slowPathLoopHeader.addLoopExit (exit);
exit.insertInstructionAfter (outerExit);

end
/* Determine all fast-path ends, e.g. the n highest probable loop

ends */
Set<LoopEndNodes> fastPathEnds← computeFastPathEnds (loop);

/* Update phis of inner and outer loop */

for LoopEndNode end in fastPathLoopHeader.ends () do
if fastPathEnds.contains (end) then

/* Fast-path back edges will jmp back to fast-path

header */

continue;
else

end.setLoopHeader (slowPathLoopHeader);
/* Add */

int outerPhiIndex← 0;
for PhiNode phi in fastPathLoopHeader.phis () do

slowPathLoopHeader.phis ().get (outerPhiIndex++).addInput
(phi.removeInputAtLoopEnd (end));

end
end

end
/* update predecessor at [0] phi inputs */

int outerPhiIndex← 0;
for PhiNode phi in fastPathLoopHeader.phis () do

phi.replaceInputAt (0, slowPathLoopHeader.phis ().get
(outerPhiIndex++));

end
return new Loop(slowPathLoopHeader);
Algorithm 1: Fast-Path Loop Creation Algorithm.

Figure 3 shows the IR of a generic loop during the transformation.
First the compiler creates the outer loop header, which becomes the
slow-path loop header. Then, the compiler re-routes the slow-path
loop back edges to the slow-path (outer) loop header.

Discussion. Fast-path loop creation has the advantage that the
compiler does not need to duplicate code in order to optimize may-
aliasing memory accesses. Although code duplication can often
improve performance, it inherently increases code size, which a
compiler tries to minimize. Fast-path loop creation is a useful opti-
mization on its own. Although we did not evaluate the approach
in detail, we determined peak performance improvements of up to
50% for micro-benchmarks. However, in our work, we focused on
the unrolling of non-counted loops, and used this optimization as a
starting point for a fast-path loop unrolling algorithm described in
Section 3.1.1.
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Figure 3: Fast-Path Loop Creation Example.

3.1.1 Non-counted Loop Unrolling via fast-path loop creation.
We can extend the algorithm for fast-path loop creation to perform
fast-path unrolling of non-counted loops. First, we identify those
loops that should be unrolled. We then create the slow-path, outer
loop for these loops.3 After the slow-path loop is created, we use a
loop peeling transformation [2] to duplicate the body of the inner
(including its loop exit conditions), fast-path loop u times, where u
denotes the number of desired unrollings. After the peeling step, we
remove the inner, fast-path loop by removing inner loop exits and
re-routing inner loop back edges to the outer loop. The loop φs of
the inner loop are replaced with inputs coming from the single non-
back-edge predecessor. In a final step, we remove the inner loop
header. Figure 4 shows the example from Figure 3 after fast-path
loop creation, during peeling and inner loop removal. Unrolling
loops with the proposed technique has one major advantage over
general, and partial unrolling of loops. As we re-route all back
edges that we consider being part of the slow-path to the outer loop
header, only the fast-path loop back edges remain connected to the
inner, fast-path loop. Peeling the fast-path loop and removing it
afterwards effectively unrolls only the fast-path of the original code
and not its slow-path. Therefore, we keep the code size increase at
a minimum, assuming the correctness of the profiling information.

We perform fast-path loop unrolling independently of the fast-
path loop creation optimization. If a loop should be unrolled, we
perform the unrolling transformation. Later in the compilation
pipeline, we perform a dedicated analysis to detect optimizable
patterns like the one from Listing 6, for which we create the fast-
path loop independently of any prior unrollings. The fast-path loop
creation optimization and the fast-path loop unrolling share IR
transformations, but semantically they are two separate optimiza-
tions.

3 This also works for loops with only one back edge. The inner loop temporarily then
has no back edge and is degenerated until the transformation is finished.

3.2 Fast-Path Loop Unrolling Algorithm
We now explain the fast-path unrolling algorithm in detail. Our
implementation platform Graal only performs a limited set of op-
timizations on non-counted loops4. We do not want to interfere
with them, that is, we want to prevent creating IR patterns that are
not optimizable for other transformations. Therefore, we ignore
counted loops and loops for which the compiler can infer the it-
eration count after hoisting loop-invariant instructions out of the
loop’s body. We use the notion of unrolling opportunities. Oppor-
tunities model optimization-opportunities enabled by unrolling a
loop.

We implemented a set of analysis algorithms determining opti-
mization opportunities that can be enabled by loop unrolling (see
Section 4). We follow the approach from Leopoldseder et al. [29],
who proposed to separate a code duplication optimization into a
simulation and transformation part. We use this scheme and group
our unrolling approach into three major steps: identifying the opti-
mization potential (1), deciding which loop should be unrolled (2)
and then performing the final transformations (3). We first identify
a loop’s optimization potential after unrolling, by simulating the
transformation, and then decide whether we want to unroll it. Algo-
rithm 2 shows the non-counted loop unrolling optimization. First,
we filter out all loops that are counted and therefore ignored by our
approach. Then, we check a set of implemented opportunities on a
loop. Each opportunity op performs a simulation of the loop after
unrolling it (op.shouldUnroll(loop)) and analyzes the loop for opti-
mizable patterns in unrolled iterations. If such an optimization is
found, we use a static performance estimator to compute the overall
run time of the loop’s body and the overall run time of the loop’s
first (unrolled) iteration after unrolling. If the estimator predicts
that the unrolled iteration has a lower run time than the original
loop’s body, we judge whether the expected performance increase
justifies the expected code size increase (see Section 5). We derived
the upper bound of unrolling iterations via empirical evaluation.
We performed our experiments from Section 6 with an upper limit
of 2 to 64 unrollings. Although sometimes special code patterns are
sensitive to a high number of unrollings, in general we could not

4Graal performs loop unswitching and inversion on non-counted loops.
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Figure 4: Path-Based Unrolling via Fast-Path Loop Creation and Peeling.

measure noticeable differences with an upper limit higher than 4.
Thus, we unroll a loop by a maximum unrolling factor of 4. That
means, we first create the fast-path loop (Section 3.1), and then peel
the inner, slow-path loop at most four times. Finally, we remove the
inner, fast-path loop. Only unrolling loops for which we know that

Data: ControlFlowGraph cfg
Result: Optimized ControlFlowGraph cfg
outer: for Loop loop in cfg.loops () do

if isCounted (loop) then
continue outer;

for Opportunity op in UnrollingOpportunities do
int unrollings← op.shouldUnroll (loop);
if unrollings > 0 then

createFastPathLoop (loop);
for i in 0 . . . unrollings do

peelIteration (loop);
end
removeFastPathLoop (loop);

end
end
runCleanUpOptimizations (cfg);

Algorithm 2: Path-Based Unrolling Algorithm.

there is sufficient optimization potential after unrolling allows us
to keep code size increase and compile time increase at a moderate
level (See Section 6).

4 OPTIMIZATION OPPORTUNITIES AFTER
UNROLLING

In the previous sections, we described our approach for unrolling
the fast-path of a non-counted loop (see Section 3) based on splitting
loops with multiple back edges into slow-path and fast-path loops.
In this section we present some of the most important optimization
opportunities that we consider for non-counted loop unrolling,
namely safepoint poll reduction, canonicalization, and loop-carried
dependencies.

Safepoint Poll Reduction. HotSpot’s [24] execution system relies
on safepoints [32] to perform operations that require all mutator

threads to be in a well-defined state with respect to heap accesses.
If the JVM requests a safepoint, it marks a dedicated memory page
as non-readable. Mutators periodically poll this safepoint page and
segfault in case the VM requested a safepoint. The JVM handles
the segfault using a segfault handler registered for that purpose,
which then invokes the safepoint handler that performs the desired
operation. Typical safepoint operations are garbage collections [28],
class redefinitions [51], lock unbiasing, and monitor deflation. As
the safepoint protocol is collaborative, it forces the code generated
by the JIT compilers to periodically poll the safepoint page (the
interpreter polls it after every interpreted bytecode). Generated
code typically performs these polls at specific program locations:
• Method returns: Safepoint polls are performed at every method
return.
• Loop back edges: Safepoint polls are performed at every loop
back edge.
Safepoint polls inside loops typically impose many problems

on optimizing compilers. They require compilers to balance run-
time performance and latency of safepoint operations. Optimizing
compilers in the JVM aim to generate fast code; a safepoint poll in
a hot loop is an additional memory read at every iteration, which
leaves space for further optimization, for example, the safepoint
poll can be optimized away if the iteration count of a loop is known
and low enough to not have a negative effect on application latency.
However, if a loop is long-running and the safepoint poll on the
back edge is optimized away, the entire VM may be forced to wait
for the loop to finish until the next safepoint is hit. In the worst case
a full GC cannot be performed because a mutator loop does not poll
the safepoint page on its back edge. Stalling a full GC can crash the
VM as it can, for example, run out of memory. There are multiple
solutions to this dilemma; for example, the Graal compiler currently
removes safepoint polls on a loop’s back edge if it can prove that
the loop is counted and the loop’s iteration count is in the range of
a 32 bit integer. For non-counted loops and for loops in the range
of 64 bit integers (Java long) Graal only removes safepoint polls
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on back edges if the path leading to the back edge is guaranteed to
perform a safepoint poll, for example, via a method call.

Graal does not remove safepoint polls for non-counted loops,
which leaves further optimization opportunities. Consider the code
in Listing 8. The non-counted loop has two back edges, the true
and the false branch. The compiler removes the safepoint poll
on the false branch as there is a call inside which will poll on
return. However, for the true branch the compiler does not remove
the safepoint poll. Thus, if the true branch is the fast-path, one
additional memory read is performed in every iteration of the loop.
There are multiple solutions to optimize this safepoint poll without
violating the implications of the safepoint protocol. The simplest
solution is to unroll the loop u times, which will reduce the number
of safepoint polls to n/u.

1 while ( . . . ; /*.. condition ..*/ ; . . . ) {
2 if ( /*...*/ ) {
3 // fast -path

4 // no call

5 . . . .
6 s a f e p o i n t P o l l ;
7 } else {
8 // safepoint poll on call return

9 c a l l ( ) ;
10 }
11 }

Listing 8: Unrolling Opportunity: Safepoint Poll
Reduction.

Canonicalization. 5 Instructions having loop φs [9] as inputs
are potentially optimizable [29]. They can often be optimized by
replacing their inputs with an input to the φ instead of the original
φ. To optimize loop phis, we simulate the unrolling of one iteration
by checking if an instruction is optimizable under the assumption
that it has the back edge input of a loop φ as input instead of the φ.
Listing 9 shows a simple loop that follows this pattern. The loop
φ loopPhi has three inputs, the unknown value a on the forward
predecessor, the constant 0 on the first back edge, and the unknown
value b on the second back edge. In the body of the loop, we check
if(loopPhi == 0), which is generally not true. After unrolling
the loop once, it has four back edges instead of three. One back edge
was added by the unrolled loop body. Line 13 in Listing 10 was the
back edge 1 in original loop’s (Listing 9) body. However, peeling the
fast-path of the loop in front of the original loop replaces the loop
φ with the constant 0, which was the φ’s value on the original back
edge 1. Therefore, the check if(loopPhi == 0) in the original
iteration of the loop becomes if(0 == 0). The if instruction
can be eliminated and the call to doSth can be unconditionally
executed.

Loop Carried Dependency. Loop carried dependencies [7, 46] are
dependencies between different iterations of a loop. Typically, they
appear in array access patterns inside loops. Consider the example
loop in Listing 11. In every iteration of the loop, we read two array
locations a[i] and a[i+1]. Unrolling one iteration of this non-
counted loop allows us to avoid re-reading a[i+1] in the next
5 We group different simpler optimizations like global value numbering [8], con-
stant folding, strength reduction and conditional elimination [2, 43] under the term
canonicalization.

1 while ( c )
2 // loop phi: 3 inputs

3 // forward predecessor: a

4 // back edge 1: 0

5 // back edge 2: b

6 l o opPh i = φ ( a , 0 , b )
7 {
8 if ( l oopPh i ==0) {
9 doSth ( ) ;
10 }
11 if ( . . . ) {
12 // back edge 1

13 continue ;
14 } else {
15 // back edge 2

16 continue ;
17 }
18 }

Listing 9: Unrolling Opportunity: Canonicalization
Loop.

1 while ( c )
2 // loop phi: 4 inputs

3 // forward predecessor: a

4 // back edge 1: 0

5 // back edge 2: b

6 // back edge 3: b

7 l o opPh i = φ ( a , 0 , b , b )
8 {
9 if ( l oopPh i ==0) {
10 doSth ( ) ;
11 }
12 if ( . . . ) {
13 //original back edge 1: 0 replaces loopPhi

14 if ( c ) {
15 if(0==0)

16 doSth ( ) ;
17 }
18 if ( . . . ) {
19 // back edge 1

20 continue ;
21 } else {
22 // back edge 2

23 continue ;
24 }
25 } else {
26 break ;
27 }
28 } else {
29 // back edge 3

30 continue ;
31 }
32 }

Listing 10: Unrolling Opportunity: Canonicalization Loop
After Unrolling. Grey-shaded lines highlight the original it-
eration of the loop. The gray line with white text (line 15)
shows the enabled optimization opportunity. The black line
with white text (line 13) shows the replacement of a loop φ
with the back edge value along the fast-path.

iteration. In the first iteration, we read a[0] and a[1]. In the second
iteration, we read a[1] and a[2]. If we unroll this loop once and
there is no aliasing side-effect in the body of the loop, we can
eliminate one redundant load.

We implemented a simulation-based unrolling analysis that esti-
mates the effects of a loop unrolling. We combined it with a read

7



ManLang’18, September 12–14, 2018, Linz, Austria David Leopoldseder et al.

Read a[0]

Read a[1] Iteration i

Iteration i+1

Read a[1]

Read a[2]

while(….) {
 a[i] = a[i] * a[i + 1];
}

a[i]

a[i+1]

a[i+1]

a[i+2]

Write a[0]a[i]=

Mem

a[0] a[1] a[2]

r3

a[i+1]

Re-use 

r2

Register

r1 r2 r3

r1*r2

a[i]

a[i+2]

a[i+1]

Write a[0]a[i+1]=

r1*r2

r3

Figure 5: Loop-Carried Dependency Read Elimination Sim-
ulation.

elimination optimization to determine if there are loop-carried
dependencies in the original loop body that can be optimized.

In order to find loop carried dependencies, we propose to com-
pute a superblock [26]6 through the loop. For each memory location
written and read in the superblock, the compiler can determine the
associated instruction. We map memory reads to virtual registers
and track their values over all instructions in the superblock. We
first iterate over the superblock and record all memory reads and
writes. Then, we iterate over all loop φ instructions of the loop and
establish a mapping from loop φ values to their back edge values
of the superblock7. Finally, we iterate over the superblock a sec-
ond time replacing the φ node inputs in the loop header with the
established back edge value mapping. For every instruction in the
superblock, we try to eliminate memory accesses by re-using an
already computed value. We repeat this process until there are no
further eliminations possible. Figure 5 illustrates our read elimina-
tion simulation. We track the values read from memory in registers
and update them (as well as the memory locations) according to the
instruction seen. We then replace i with i + 1, which is the value
of the φ on the back edge, and repeat the simulation for the loop
body. If we find a read or a write that is redundant, we use a static
performance estimator and record the estimated run-time cycles
saved for this instruction. We then trade-off the cycles saved (via
unrolling) with the overall size of the superblock and perform the
unrolling if the benefit is sufficiently high (see Section 5 for details).

1 while ( . . . ) {
2 a [ i ] = a [ i ] ∗ a [ i +1]
3 }

Listing 11: Unrolling Opportunity: Loop Carried
Dependency Removal.

5 IMPLEMENTATION
We implemented the unrolling of non-counted loops in the Graal
compiler [35, 36, 40], a dynamically-optimizing compiler for the
6 We include structured control-flow diamonds if profiling information indicates that
a split’s successor paths are taken with equal probability.
7The superblock ends in a loop back edge.

HotSpotVM [24]. For evaluation, we used GraalVM [36], a HotSpot
version in which Graal replaces C2 [38] as the top-tier compiler.
Graal is a Java bytecode-to-machine-code just-in-time (JIT) com-
piler written in Java itself. Graal-generated code is comparable in
performance to C2-generated code [40].

5.1 System Overview
Graal’s compilation pipeline consists of a front end and a back end.
The front end consists of bytecode parsing, creation of Graal IR [16],
and high-level platform-independent optimizations such as inlining
and partial escape analysis [44]. The platform-independent IR is
then lowered to a platform-dependent one in the back end. On this
low-level IR, additional optimizations and register allocation are
performed.

5.2 Implementation Details
We implemented the unrolling optimization in the front end of the
Graal compiler. The front end applies it iteratively, together with
partial escape analysis [44] and scalar replacement, conditional
elimination and read elimination. This way, optimization opportu-
nities enabled by unrolling are immediately seized by the respective
optimization.

5.2.1 Unrolling Heuristic. The final decision whether to unroll a
loop is performed by a trade-off function, which takes several vari-
ables into account that are relevant for the final unrolling decision:

• Maximum compilation unit size: The virtual machine imposes
an upper bound for code size per compilation unit.
• Initial graph size: The heuristic must be dynamically based on
the initial size of the compilation unit.
• Cycles saved: The number of estimated cycles saved inside the
loop body by unrolling it. This value is calculated during the
simulation of the unrolling of the loop. The compiler estimates
the overall cycles of the loop and the cycles of the loop after
unrolling and computes the difference.
• Code Size Increase Budget: Prior work [29] in the Graal com-
piler derived constants for maximal code size increase of single
optimizations. Therefore, all non-inlining based optimziations
inside the Graal compiler are limited in their code size increase
by 50%. The reason for that is that code size increases also in-
crease compile time as the workload for subsequent compiler
optimizations is increased.
• Byte per cycle spending: In order to relate an estimated benefit
with its cost we compute the ratio between code size and run-
time improvement. Thus, we need to specify how much code
size increase (in bytes) we are willing to accept for every saved
cycle. This is currently configured to be 512 bytes per saved
cycle.We derived this value via a structured experiment running
our benchmarks from Section 6 with all powers of 2 between
2 and 1024. The value 512 generated the best results for those
benchmarks.
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All operands are computed by the optimization opportunities
(see Section 3). The final unrolling decision is done by the algo-
rithm given by the pseudo code in Algorithm 3 and is based on the
following trade-off heuristic:

l . . .Loop
u . . .Unrollings

l .s . . .Loop Size
l .cp . . .Cycles saved per loop iteration
l .oc . . .Overall cycles loop including condition
cs . . .Compilation Unit Size
is . . .Compilation Unit Initial Size
I B . . .Code Size Increase Budget = 1.5
MS . . .Max Compilation Unit Size
MU . . .Max Unrollings = 4
BS . . .Bytes/Cycle Spending = 512

canUnroll(loop) 7→ is ∗ I B < MS ∧ cs + u ∗ l .s < MS

shouldUnroll(loop) 7→ l .cp ∗ BS > l .s

nrOfUnrollings(loop) 7→ u ≡min (MU , l .cp/l .oc ∗MU ∗ 10)

The compiler unrolls a loop nrOfUnrollings times if it has

/* Size Restriction */

if canUnroll (loop) then
/* Trade-off Heuristic */

if shouldUnroll (loop) then
/* Compute Final Unrolling Factor */

return nrOfUnrollings (loop);
return 0;

Algorithm 3: Unrolling Decision Algorithm.

sufficient optimization potential. It derives this by comparing the
saved cycles per iteration with the size of the loop, multiplied by a
constant factor that we can set to express how much code size we
are willing to spend for one cycle run time reduction.

6 EVALUATION
In our evaluation we seek to determine whether fast-path loop
unrolling of non-counted loops can improve the performance of
Java applications. We evaluated our implementation on top of the
GraalVM8 by running and analyzing a set of industry-standard
benchmarks.

6.1 Environment
All benchmarks were executed on an Intel© Core™ i7-6820HQ
machine running at 2.7GHz, equipped with 32 GB DDR-4 RAM
clocking at 2133 MHz. The CPU provides 8 hardware threads. We
disabled turbo boost 9 for more stable results.

We evaluated our non-counted loop unrolling approach with
three industry-standard benchmarks suites (Java DaCapo [3], Scala
DaCapo [42], jetstream JavaScript benchmark [39] 10) and a set of
Java micro-benchmarks, that stress the usage of Java 8 language
features such as streams and lambdas.
8Version 0.32 https://graalvm.github.io/
9https://www.intel.com/content/www/us/en/architecture-and-technology/
turbo-boost/turbo-boost-technology.html
10 We used only the asm.js [22] benchmarks from the jetstream suite, which are C
programs compiled to JavaScript via emscripten [54]. A large part of the jetstream
suite is based on the retired Octane [6] benchmark suite. We measured fast-path loop
unrolling performance on the octane suite but did not get any significant changes in
performance thus we do not report Octane numbers in this paper.

The Java and Scala benchmarks (Java DaCapo, Scala DaCapo,
micro-benchmarks) can be executed directly on the GraalVM as
they are compiled to JVM bytecode [33]. The jetstream JavaScript
benchmark suite was executed on GraalJS [50], an ECMAscript 11
compliant JavaScript implementation on top of Truffle [53]. Truf-
fle [49, 50, 52, 53] is a self-optimizing abstract syntax tree (AST)
interpreter framework on top of the GraalVM. Truffle language
implementations can utilize the Graal compiler to perform Par-
tial Evaluation [19] of AST programs and reach near-native per-
formance. GraalJS is on average 17% slower compared to the V8
JavaScript VM [21]. Truffle AST interpreters are themselves im-
plemented in Java. During compilation, their ASTs are combined
to one compilation unit via partial evaluation, which effectively
inlines the logic for each AST operation into the root AST node.
This is performed on the Java bytecode level, therefore dynamic
languages executed on top of Truffle produce Java compilation
units themselves. However, Truffle compilation units are typically
larger and more dynamic than classical Java workloads, requir-
ing more ellaborate compiler optimizations to reach near-native
performance [29].

We tested 2 configurations: the baseline, without unrolling en-
abled, and a configuration pbu (for path-based unrolling) with the
optimization enabled. We accounted for warm-up of each bench-
mark by only measuring performance after the compilation fre-
quency stabilized. For each benchmark we performed 20 out-of-
process runs and computed the mean of the last iterations after
warm-up. The number of warm-up and measurement iterations
depend on the time needed by the compiler to stabilize. Therefore,
we computed the number of measurement iterations based on the
number of warm-up iterations. This varied for each benchmark
ranging from 5 to 10 iterations. For plotting, we normalized the
results of the pbu configuration to an arithmetic mean computed
from the baseline for each benchmark. Some benchmarks in our
experiments, especially DaCapo and ScalaDacapo, suffer from sta-
bility problems showing irregular outliers for all metrics. Some of
those outliers can be partially attributed to HotSpot’s multi-tiered
execution system with an interpreter and two JIT compilers (C1
and Graal). The number of compilations done by the JIT compil-
ers depends on profiling information gathered during interpreting
the code, therefore code size and compile time metrics, which are
accumulated over the entire run of a benchmark, are not stable
across several out-of-process iterations. We also measured irregu-
lar outliers with the baseline configuration, however we used the
baseline to calculate the mean for normalization. Note that our own
micro-benchmarks and the asm.js jetstream benchmarks are mostly
stable.

Our main hypothesis is that fast-path unrolling of non-counted
loops can significantly increase the run-time performance of Java
applications. Therefore, our primary metric of interest is perfor-
mance (average run time or throughput). However, in order to
validate that our optimization can be used in practice, we also
measured code size and compile time.

11https://www.ecma-international.org/publications/standards/Ecma-262.htm
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6.2 Results
Figure 6 shows the results of our experiments for the benchmarks
(Figures 6a to 6d) as boxplots [18]. For each benchmark, we plotted
compile time, code size and performance (runtime or throughput).
We normalized the results to the baseline configuration, without
unrolling enabled.

Performance. The performance impact of fast-path unrolling of
non-counted loops varies over the different benchmark suites. The
impact on Java DaCapo is mixed. We see slight improvements and
regressions of up to 2% (e.g. xalan). The performance impact on
the Scala DaCapo suite is similar. However, several benchmarks
showed larger improvements (factorie) and regressions (apparat).
The factorie benchmark offers much optimization potential for un-
rolling. It contains many loops with carried dependencies that can
be optimized by our approach. appart reacts sensitive to the removal
of safe-points as it has a small working set which suffers caching
issues if garbgabe collection is delayed. Therefore our safepoint
poll reduction can also have negative side-effects.

Performance improvements on the micro-benchmarks are sig-
nificant with run-time reductions of up to 35%. The most signifi-
cant performance improvements are reached on our subset of the
jetstream benchmark suite with improvements of up to 150% (jet-
stream:dry.c). Our subset of the jetstream suite only contains asm.js
benchmarks. Those benchmarks offer much optimization potential
(mostly loop-carried dependencies), for example, array accesses
that can be optimized if a loop is unrolled once.

Compile Time. We consider the compile-time increase to be ac-
ceptable for the benchmarks. We measured the highest compile-
time increase in the Scala DaCapo:factorie and Scala DaCapo:specs
benchmarks, with a median increase of about 25%. We analyzed
the factorie benchmark in detail; several hot compilation units in
this benchmark are very large. Unrolling them, although benefi-
cial (see run-time reduction by 5%), creates additional code that
slows down subsequent compiler phases. For this benchmark, the
unrolling overhead is about 12%; however, the additional compile-
time overhead for subsequent optimizations is also increased by
about 10%, causing a general compile-time overhead of 25% for the
entire benchmark.

Code Size. The code size impact of the entire optimization is
negligible in nearly all cases. This is due to our trade-off function
that is configured to only optimize loops for which we know that
there is a sufficient optimization potential. Unrolling all loops that
carry optimization potential would have a severe impact on code
size. However, those loops for which the run-time impact justifies
a certain code-size increase are much less frequent, thus the overall
increase in code size is low. There are two outliers with a code size
increase of up to 20%. They are the same outliers as for compile
time: the Scala DaCapo factorie and specs benchmarks. We see that
compile time increase and code size increase correlate on those
benchmarks. The current parameterization of the optimization will
never allow a code size increase that is larger than 50%. However,
those two benchmarks can be optimized further. As part of our
future work, we want to experiment with different parameters for
the bytes-per-cycle ratio in our trade-off function to reduce the
compile-time overhead.

Discussion. The performance increases shown in our experi-
ments seems to confirm our initial hypothesis, namely that un-
rolling of non-counted loops is beneficial. We have shown that we
can increase the run-time performance of Java programs by using
simulation-based unrolling of non-counted loops.

It is important to note that Truffle AST interpreters themselves
are programmed in Java. This means that after partial evaluation
of a JavaScript AST (for e.g. the jetstream benchmarks) Graal still
compiles Java code. However, partial evaluation often creates IR
patterns that are more dynamic than statically typed Java code.
Thus, the compiler has more potential for optimizations.

Since many benchmarks contain more non-counted loops than
counted ones, the optimization potential for our fast-path loop
unrolling approach would be high in theory (as shown in the initial
experiment, see Section 2). However, in our implementationwe only
optimize loops for which we can determine one of the presented
optimization opportunities.

7 RELATEDWORK
Our work builds upon the idea of simulation-based code duplica-
tion presented by Leopoldseder et al. [29]. We extended this work
by simulating not only general code duplications at control flow
merges but simulating the effects of unrolling entire non-counted
loops.

Numerous approaches to generate faster code for loops have
been proposed over the last decades. Most related to our approach
is the work of Huang and Leng [25]. They proposed a generalized
loop unrolling of while(...) loops, based on adding the weakest
precondition [13] of a loop to its condition. We take a different ap-
proach than their work by selectively unrolling loops with arbitrary,
side-effecting instructions together with their loop conditions. We
do not use the concept of weakest preconditions as the automatic
derivation of them is not possible in the presence of arbitrary side-
effects. Therefore, we are searching for different optimization op-
portunities that can still be enabled via unrolling a loop even if its
loop conditions are unrolled with the body.

Loop unrolling and software pipelining [1] combined with loop
jamming was researched by Carr et al. [5]. Their approach per-
forms unroll-and-jam to increase the instruction-level parallelism
of nested loops in order to generate better scheduling on pipelined
architectures. Our approach is different in that we explicitly unroll
non-counted loops to enable other compiler optimizations. We did
not implement an instruction-level-parallelism-based optimization.

The HotSpot server compiler [38] applies different optimizations
on counted and non-counted loops including unrolling, tiling and
iteration splitting [37]. Graal implements similar loop optimizations
as the server compiler. Our work extends Graal to also unroll non-
counted loops.

Carminati et al. [4] studied a loop unrolling approach to reduce
worst-case execution time of real-time software. They use different
unrolling strategies for counted and non-counted loops, and use if-
conversion to create branch-less code. Our approach to non-counted
loop unrolling allows to effectively unroll only the fast-path of a
loop. Additionally, we improve upon their work by removing all
restrictions (general side-effects) on the body of the target loop to
be unrolled.
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Figure 6: Fast-Path Unrolling Performance relative to Baseline; compile time(lower is better), code size(lower is better), time, (lower
is better), throughput (higher is better).

Krall and Lelait [27] proposed loop unrolling for SIMD-based
auto-vectorization in an optimizing compiler. Counted loops are
unrolled n times where n equals the vector length. A scalar-to-
SIMD transformation then transforms scalar code to its vectorized
equivalent. This work is partially related to ours in that they unroll

to enable subsequent optimizations, in their case scalar-to-SIMD
transformation. However, their work only considers counted loops.
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8 CONCLUSION & FUTUREWORK
In this paper, we have presented a novel approach to unroll non-
counted loops based on their optimization potential. We have found
that a large number of Java programs contain non-counted loops.
To optimize them, we have presented a novel approach to use
simulation-based code duplication for the unrolling of non-counted
loops. We implemented our approach on top of the GraalVM and
showed in our evaluation that optimizing non-counted loops with
simulation-based loop unrolling can significantly increase the run-
time performance of Java programs, thus suggesting that modern
Java compilers could consider implementing such optimizations.

As part of future work, we want to add more optimizations
based on analyzing more non-counted loops in Java programs (e.g.
SPECjvm2008 [45]). Additionally, we are currently working on our
implementation to reduce compile time further.
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